Global-in-time semiclassical regularity for the Hartree-Fock equation

被引:4
|
作者
Chong, J. J. [1 ]
Lafleche, L. [1 ]
Saffirio, C. [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Dept Math & Comp Sci, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
POISSON SYSTEM; EXISTENCE; UNIQUENESS; BEHAVIOR; LIMIT;
D O I
10.1063/5.0089741
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For arbitrarily large times T > 0, we prove the uniform-in-h propagation of semiclassical regularity for the solutions to the Hartree-Fock equation with singular interactions of the form V(x) = +/-|x|(-a) with a is an element of (0, 1/2). As a by-product of this result, we extend to arbitrarily long times the derivation of the Hartree-Fock and the Vlasov equations from the many-body dynamics provided in the work of Chong et al. [arXiv:2103.10946 (2021)]. (C) 2022 Author(s).
引用
收藏
页数:9
相关论文
共 50 条