Assessment of co-sintering as a fabrication approach for metal-supported proton-conducting solid oxide cells

被引:26
|
作者
Wang, Ruofan [1 ]
Byrne, Conor [1 ]
Tucker, Michael C. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Convers Grp, Berkeley, CA USA
关键词
Protonic ceramic fuel cells; Metal supported; Protonic ceramic electrochemical cells; Doped barium zirconate; Doped strontium zirconate; Ca doped lanthanum ortho-niobate; CA-DOPED LANBO4; CERAMIC FUEL-CELLS; HIGH-PERFORMANCE; POWER-DENSITY; BARIUM ZIRCONATE; STABILITY; ELECTROLYSIS; SOFCS; OPERATION; PROGRESS;
D O I
10.1016/j.ssi.2019.01.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton conducting oxide electrolyte materials could potentially lower the operating temperature of metal-supported solid oxide cells (MS-SOCs) to the intermediate range 400 to 600 degrees C. The porous metal substrate provides the advantages of MS-SOCs such as high thermal and redox cycling tolerance, low-cost of structural materials, and mechanical ruggedness. In this work, viability of co-sintering fabrication of metal-supported proton conducting solid oxide cells is investigated. Candidate proton conducting oxides including perovskite oxides BaZr0.7Ce0.2Y1.0O3-delta, SrZr0.5Ce0.4Y0.1O3-delta and Ba3Ca1.18Nb1.82O9-delta, pyrochlore oxides La1.95Ca0.05Zr2O7-delta and La2Ce2O7, and acceptor doped rare-earth ortho-niobate La0.99Ca0.01NbO4 are synthesized via solid state reactive or sol-gel methods. These ceramics are sintered at 1450 degrees C in reducing environment alone and supported on Fe-Cr alloy metal support, and their key characteristics such as phase formation, sintering property, and chemical compatibility with metal support are determined. Most electrolyte candidates suffer from one or more challenges identified for this fabrication approach, including: phase decomposition in reducing atmosphere, evaporation of electrolyte constituents, contamination of the electrolyte with Si and Cr from the metal support, and incomplete electrolyte sintering. In contrast, La0.99Ca0.01NbO4 is found to be highly compatible with the metal support and co-sintering processing in reducing atmosphere. A metal-supported cell is fabricated with La0.99Ca0.01NbO4 electrolyte, ferritic stainless steel support, Pt air electrode and nanoparticulate ceria-Ni hydrogen electrocatalyst. The total resistance is 50 Omega.cm(2) at 600 degrees C. This work clearly demonstrates the challenges, opportunities, and breakthrough of metal-supported proton-conducting solid oxide cells by co-sintering fabrication.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [21] New Insights into the Proton-Conducting Solid Oxide Fuel Cells
    Cao J.
    Ji Y.
    Shao Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (01): : 83 - 92
  • [22] High-entropy design in sintering aids for proton-conducting electrolytes of solid oxide fuel cells
    Wang, Meng
    Hua, Yilong
    Gu, Yueyuan
    Yin, Yanru
    Bi, Lei
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 4204 - 4212
  • [23] Novel Co-Sintering Techniques for Fabricating Intermediate Temperature, Metal Supported Solid Oxide Fuel Cells (IT-m-SOFCs)
    Rahul, S. H.
    Rupa, Pantula K. P.
    Panda, Nirmal
    Balasubramanian, Krishnamurty
    Kumar, R. V.
    Krishnan, Venkatesan Venkata
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 857 - 866
  • [24] Co-Extrusion/Phase Inversion/Co-Sintering for Fabrication of Hollow Fiber Solid Oxide Fuel Cells
    Droushiotis, N.
    Doraswami, U.
    Othman, M. H. D.
    Li, K.
    Kelsall, G. H.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 665 - 672
  • [25] Metal-Supported Solid Oxide Fuel Cells with Impregnated Electrodes
    Zhou, Yucun
    Zhan, Zhongliang
    Wang, Shaorong
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 877 - 883
  • [26] Nanostructure Electrodes for Metal-supported Solid Oxide Fuel Cells
    Zhan, Zhongliang
    Zhou, Yucun
    Wang, Shaorong
    Liu, Xuejiao
    Meng, Xie
    Wen, Tinglian
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 925 - 931
  • [27] Metal-Supported Solid Oxide Fuel Cells with a Simple Structure
    Zhou, Yucun
    Ye, Xiaofeng
    Li, Junliang
    Zhan, Zhongliang
    Wang, Shaorong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : F332 - F336
  • [28] Coating developments for Metal-supported Solid Oxide Fuel Cells
    Stange, M.
    Denonville, C.
    Larring, Y.
    Haavik, C.
    Brevet, A.
    Montani, A.
    Sicardy, O.
    Mougin, J.
    Larsson, P. O.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 511 - 520
  • [29] Manufacturing and characterization of metal-supported solid oxide fuel cells
    Blennow, Peter
    Hjelm, Johan
    Klemenso, Trine
    Ramousse, Severine
    Kromp, Alexander
    Leonide, Andre
    Weber, Andre
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7117 - 7125
  • [30] Progress in metal-supported solid oxide fuel cells: A review
    Tucker, Michael C.
    JOURNAL OF POWER SOURCES, 2010, 195 (15) : 4570 - 4582