Assessment of co-sintering as a fabrication approach for metal-supported proton-conducting solid oxide cells

被引:26
|
作者
Wang, Ruofan [1 ]
Byrne, Conor [1 ]
Tucker, Michael C. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Convers Grp, Berkeley, CA USA
关键词
Protonic ceramic fuel cells; Metal supported; Protonic ceramic electrochemical cells; Doped barium zirconate; Doped strontium zirconate; Ca doped lanthanum ortho-niobate; CA-DOPED LANBO4; CERAMIC FUEL-CELLS; HIGH-PERFORMANCE; POWER-DENSITY; BARIUM ZIRCONATE; STABILITY; ELECTROLYSIS; SOFCS; OPERATION; PROGRESS;
D O I
10.1016/j.ssi.2019.01.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton conducting oxide electrolyte materials could potentially lower the operating temperature of metal-supported solid oxide cells (MS-SOCs) to the intermediate range 400 to 600 degrees C. The porous metal substrate provides the advantages of MS-SOCs such as high thermal and redox cycling tolerance, low-cost of structural materials, and mechanical ruggedness. In this work, viability of co-sintering fabrication of metal-supported proton conducting solid oxide cells is investigated. Candidate proton conducting oxides including perovskite oxides BaZr0.7Ce0.2Y1.0O3-delta, SrZr0.5Ce0.4Y0.1O3-delta and Ba3Ca1.18Nb1.82O9-delta, pyrochlore oxides La1.95Ca0.05Zr2O7-delta and La2Ce2O7, and acceptor doped rare-earth ortho-niobate La0.99Ca0.01NbO4 are synthesized via solid state reactive or sol-gel methods. These ceramics are sintered at 1450 degrees C in reducing environment alone and supported on Fe-Cr alloy metal support, and their key characteristics such as phase formation, sintering property, and chemical compatibility with metal support are determined. Most electrolyte candidates suffer from one or more challenges identified for this fabrication approach, including: phase decomposition in reducing atmosphere, evaporation of electrolyte constituents, contamination of the electrolyte with Si and Cr from the metal support, and incomplete electrolyte sintering. In contrast, La0.99Ca0.01NbO4 is found to be highly compatible with the metal support and co-sintering processing in reducing atmosphere. A metal-supported cell is fabricated with La0.99Ca0.01NbO4 electrolyte, ferritic stainless steel support, Pt air electrode and nanoparticulate ceria-Ni hydrogen electrocatalyst. The total resistance is 50 Omega.cm(2) at 600 degrees C. This work clearly demonstrates the challenges, opportunities, and breakthrough of metal-supported proton-conducting solid oxide cells by co-sintering fabrication.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [11] Assessment of Protective Coatings for Metal-Supported Solid Oxide Electrolysis Cells
    Shen, Fengyu
    Reisert, Michael
    Wang, Ruofan
    Singh, Prabhakar
    Tucker, Michael C.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) : 9383 - 9391
  • [12] Two-step co-sintering method to fabricate anode-supported Ba3Ca1.18Nb1.82O9-δ proton-conducting solid oxide fuel cells
    Wang, Siwei
    Zhang, Lei
    Yang, Zhibin
    Zhang, Lingling
    Fang, Shumin
    Brinkman, Kyle
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2012, 215 : 221 - 226
  • [13] Metal-supported solid oxide cells advancements and challenges
    Vafakhah, S.
    Kaur, G.
    Giddey, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 111 : 833 - 847
  • [14] Development of metal-supported solid oxide fuel cells
    Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    Zhan, Z. (zzhan@mail.sic.ac.cn), 1600, Chinese Ceramic Society (41):
  • [15] A cost-effective process for fabrication of metal-supported solid oxide fuel cells
    Kong, Yonghong
    Hua, Bin
    Pu, Jian
    Chi, Bo
    Jian, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 4592 - 4596
  • [16] Development of Metal-Supported Solid Oxide Fuel Cells
    Franco, Th.
    Haydn, M.
    Muecke, R.
    Weber, A.
    Ruettinger, M.
    Buechler, O.
    Uhlenbruck, S.
    Menzler, N. H.
    Venskutonis, A.
    Sigl, L. S.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 343 - 349
  • [17] Metal-supported SOFC Fabricated by Tape Casting and Its Characterization: A Study of the Co-sintering Process
    Ruhma, Zaka
    Yashiro, Keiji
    Oikawa, Itaru
    Takamura, Hitoshi
    Kawada, Tatsuya
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2021, 53 (05):
  • [18] Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells
    Yan, Ning
    Fu, Xian-Zhu
    Chuang, Karl T.
    Luo, Jing-Li
    JOURNAL OF POWER SOURCES, 2014, 254 : 48 - 54
  • [19] Scientometric review of proton-conducting solid oxide fuel cells
    Bello, Idris Temitope
    Zhai, Shuo
    Zhao, Siyuan
    Li, Zheng
    Yu, Na
    Ni, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (75) : 37406 - 37428
  • [20] Recent advances in proton-conducting solid oxide electrolysis cells
    Wang, Jianxiong
    Chen, Wei
    Wang, Yuhuan
    Wei, Jialu
    Zhang, Wei
    Sun, Chunwen
    Peng, Suping
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 317