Phase coexistence in polydisperse liquid mixtures: Beyond the van der Waals approximation

被引:22
|
作者
Kalyuzhnyi, YV
Kahl, G
机构
[1] Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine
[2] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
来源
JOURNAL OF CHEMICAL PHYSICS | 2003年 / 119卷 / 14期
关键词
D O I
10.1063/1.1607952
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solution of the mean spherical approximation for a polydisperse fluid mixture of particles interacting via a set of (factorizable) hard-sphere Yukawa potentials allows one to represent those thermodynamic quantities that are relevant to determine phase coexistence (i.e., pressure and chemical potential) by a limited number of (generalized) moments. Being thus a member of "truncatable free energy models," the equilibrium conditions reduce to a set of coupled and highly nonlinear equations; we have solved these relations, we have determined phase diagrams for polydisperse fluid mixtures (i.e., cloud and shadow curves as well as binodals), and have extracted the daughter distribution functions of the coexisting phases. (C) 2003 American Institute of Physics.
引用
收藏
页码:7335 / 7343
页数:9
相关论文
共 50 条
  • [21] Van der Waals approximation for potassium bubbles in Tungsten
    Nagy, A
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1996, 27 (06): : 987 - 992
  • [22] SCATTERING BY A VAN DER WAALS FORCE IN BORN APPROXIMATION
    GANAS, PS
    PHYSICAL REVIEW A, 1971, 4 (06): : 2224 - &
  • [23] Solvation thermodynamics in a van der Waals liquid
    Graziano, G
    THERMOCHIMICA ACTA, 2003, 399 (1-2) : 181 - 187
  • [24] Phase diagrams of the classical Heisenberg fluid within the extended van der Waals approximation
    Oukouiss, A
    Baus, M
    PHYSICAL REVIEW E, 1997, 55 (06): : 7242 - 7252
  • [25] Unconventional van der Waals heterostructures beyond stacking
    Sutter, Peter
    Sutter, Eli
    ISCIENCE, 2021, 24 (09)
  • [26] Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer
    Satterthwaite, Peter F.
    Zhu, Weikun
    Jastrzebska-Perfect, Patricia
    Tang, Melbourne
    Spector, Sarah O.
    Gao, Hongze
    Kitadai, Hikari
    Lu, Ang-Yu
    Tan, Qishuo
    Tang, Shin-Yi
    Chueh, Yu-Lun
    Kuo, Chia-Nung
    Lue, Chin Shan
    Kong, Jing
    Ling, Xi
    Niroui, Farnaz
    Nature Electronics, 2024, 7 (01) : 17 - 28
  • [27] Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer
    Peter F. Satterthwaite
    Weikun Zhu
    Patricia Jastrzebska-Perfect
    Melbourne Tang
    Sarah O. Spector
    Hongze Gao
    Hikari Kitadai
    Ang-Yu Lu
    Qishuo Tan
    Shin-Yi Tang
    Yu-Lun Chueh
    Chia-Nung Kuo
    Chin Shan Lue
    Jing Kong
    Xi Ling
    Farnaz Niroui
    Nature Electronics, 2024, 7 : 17 - 28
  • [28] Van der Waals device integration beyond the limits of van der Waals forces using adhesive matrix transfer
    Satterthwaite, Peter F.
    Zhu, Weikun
    Jastrzebska-Perfect, Patricia
    Tang, Melbourne
    Spector, Sarah O.
    Gao, Hongze
    Kitadai, Hikari
    Lu, Ang-Yu
    Tan, Qishuo
    Tang, Shin-Yi
    Chueh, Yu-Lun
    Kuo, Chia-Nung
    Lue, Chin Shan
    Kong, Jing
    Ling, Xi
    Niroui, Farnaz
    NATURE ELECTRONICS, 2023, 7 (1) : 17 - 28
  • [29] Phase transition in van der Waals fluid
    Hsieh, DY
    Wang, XP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (04) : 871 - 892
  • [30] Self-consistent analysis of quantum gases of hard spheres beyond the Van der Waals approximation
    Bugaev, K. A.
    EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11):