Non-orientable genus of knots in punctured Spin 4-manifolds

被引:0
|
作者
Sato, Kouki
机构
关键词
Knot; 4-manifold; Genus; Non-orientable; Spin;
D O I
10.1016/j.topol.2015.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a closed 4-manifold X and a knot K in the boundary of punctured X, we define gamma(0)(X)(K) to be the smallest first Betti number of non-orientable and null-homologous surfaces in punctured X with boundary K. Note that gamma(0)(S4) is equal to the non-orientable 4-ball genus and hence gamma(0)(X) is a generalization of the non-orientable 4-ball genus. While it is very likely that for given X, gamma(0)(X) has no upper bound, it is difficult to show it. In fact, even in the case of gamma(0)(S4), its non-boundedness was shown for the first time by Batson in 2012. In this paper, we prove that for any Spin 4-manifold X, has no upper bound. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 92
页数:5
相关论文
共 50 条
  • [31] CONSISTENCY OF M-THEORY ON NON-ORIENTABLE MANIFOLDS
    Freed, Daniel S.
    Hopkins, Michael J.
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (1-2): : 603 - 671
  • [32] Finding Non-orientable Surfaces in 3-Manifolds
    Burton, Benjamin A.
    de Mesmay, Arnaud
    Wagner, Uli
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 871 - 888
  • [33] SLICING KNOTS IN DEFINITE 4-MANIFOLDS
    Kjuchukova, Alexandra
    Miller, Allison n.
    Ray, Arunima
    Sakalli, Sumeyra
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (08) : 5905 - 5946
  • [34] Stiefel-Whitney surfaces and the tri-genus of non-orientable 3-manifolds
    Heil, W
    Núñez, V
    Gómez-Larrañaga, JC
    MANUSCRIPTA MATHEMATICA, 1999, 100 (04) : 405 - 422
  • [35] On Cr-closing for flows on orientable and non-orientable 2-manifolds
    Gutierrez, Carlos
    Pires, Benito
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (04): : 553 - 576
  • [36] On Cr-closing for flows on orientable and non-orientable 2-manifolds
    Carlos Gutierrez
    Benito Pires
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 553 - 576
  • [37] NON-ORIENTABLE GENUS OF CONNECTED SUM OF 2 GRAPHS
    QUITTE, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (13): : 833 - 835
  • [38] On slice knots and smooth 4-manifolds
    Tanaka, Toshifumi
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 931 - 936
  • [39] A presentation for the mapping class group of the closed non-orientable surface of genus 4
    Szepietowski, Blazej
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (11) : 2001 - 2016
  • [40] Cobordism of immersions of surfaces in non-orientable 3-manifolds
    Gini, R
    MANUSCRIPTA MATHEMATICA, 2001, 104 (01) : 49 - 69