SLICING KNOTS IN DEFINITE 4-MANIFOLDS

被引:0
|
作者
Kjuchukova, Alexandra [1 ]
Miller, Allison n. [2 ]
Ray, Arunima [3 ]
Sakalli, Sumeyra [4 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Swarthmore Coll, Dept Math & Stat, 500 Coll Ave, Swarthmore, PA 19081 USA
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[4] Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
关键词
UNKNOTTING INFORMATION; FLOER HOMOLOGY; INVARIANT; RIBBON; SLICENESS; SURFACES; SPACES; DISKS;
D O I
10.1090/tran/9151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the CP2-slicing number of knots, i.e. the smallest m >= 0 such that a knot K subset of S3 bounds a properly embedded, null-homologous disk in a punctured connected sum (#mCP2)x. We find knots for which the smooth and topological CP2-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth CP2-slicing number of a knot in terms of its double branched cover and an upper bound on the topological CP2-slicing number in terms of the Seifert form.
引用
收藏
页码:5905 / 5946
页数:42
相关论文
共 50 条