Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy

被引:107
|
作者
Spruytte, SG
Larson, MC
Wampler, W
Coldren, CW
Petersen, HE
Harris, JS
机构
[1] Stanford Univ, Solid State & Photon Lab, Dept Elect Engn, CISX, Stanford, CA 94305 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Agil Commun, Santa Barbara, CA USA
[4] Sandia Natl Labs, Radiat Solid Interact & Proc Dept 1111, Albuquerque, NM 87185 USA
关键词
characterization; defects; diffusion; molecular beam epitaxy; semiconducting IIIV materials; laser diodes;
D O I
10.1016/S0022-0248(01)00757-6
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Group III-nitride-arsenides are promising materials for long wavelength opto-electronic: devices grown on GaAs substrates. The growth of nitride-arsenides was performed in an elemental solid source molecular beam epitaxy system with a plasma cell to supply reactive nitrogen. Growth is carried out with plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen, as determined from the emission spectrum of the plasma. The group III growth rate controls the nitrogen concentration in the film. The photoluminescence intensity of GaNAs and GaInNAs quantum wells (QWs) increases drastically and shifts to shorter wavelengths following high temperature anneal. Nitrogen diffusion out of the QWs is responsible for the wavelength shift, We observe a decrease of interstitial nitrogen after anneal. Vertical-cavity surface-emitting lasers with GaInNAs QWs demonstrated a continous-wave operation, To limit nitrogen diffusion, the GaAs barriers surrounding the GaInNAs: QWs were replaced by GaNAs barriers, This new active region resulted in devices emitting at 1.3 mum, (C) 2001 Elsevier Science B,V, All rights reserved.
引用
收藏
页码:506 / 515
页数:10
相关论文
共 50 条
  • [31] Arsenic incorporation in HgCdTe grown by molecular beam epitaxy
    Wijewarnasuriya, PS
    Sivananthan, S
    APPLIED PHYSICS LETTERS, 1998, 72 (14) : 1694 - 1696
  • [32] High reflectance III-nitride Bragg reflectors grown by molecular beam epitaxy
    Ng, HM
    Moustakas, TD
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 2000, 5
  • [33] A study of mixed group-V nitrides grown by gas-source molecular beam epitaxy using a nitrogen radical beam source
    Bi, WG
    Tu, CW
    Mathes, D
    Hull, R
    III-V NITRIDES, 1997, 449 : 203 - 208
  • [34] InP and InGaAsP materials grown by solid-source molecular beam epitaxy
    Lu, JH
    Hao, ZB
    Ren, ZY
    Luo, Y
    FOURTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS, 2000, 4086 : 870 - 873
  • [35] OPTIMIZATION OF INTERFACES IN ARSENIDE PHOSPHIDE COMPOUNDS GROWN BY GAS-SOURCE MOLECULAR-BEAM EPITAXY
    MOY, AM
    CHEN, AC
    JACKSON, SL
    LIU, X
    CHENG, KY
    STILLMAN, GE
    BISHOP, SG
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1993, 11 (03): : 826 - 829
  • [36] CHARACTERIZATION OF ARSENIDE PHOSPHIDE HETEROSTRUCTURE INTERFACES GROWN BY GAS-SOURCE MOLECULAR-BEAM EPITAXY
    LEW, AY
    YAN, CH
    TU, CW
    YU, ET
    APPLIED PHYSICS LETTERS, 1995, 67 (07) : 932 - 934
  • [37] Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy
    Fernandez-Garrido, S.
    Redondo-Cubero, A.
    Gago, R.
    Bertram, F.
    Christen, J.
    Luna, E.
    Trampert, A.
    Pereiro, J.
    Munoz, E.
    Calleja, E.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
  • [39] Molecular Beam Epitaxy of III-Nitride Nanowires
    Zhao, S.
    Wang, Renjie
    Chu, Sheng
    Mi, Zetian
    IEEE NANOTECHNOLOGY MAGAZINE, 2019, 13 (02) : 6 - 16
  • [40] Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy
    Lee, HG
    Jeon, HC
    Kang, TW
    Kim, TW
    APPLIED PHYSICS LETTERS, 2001, 78 (21) : 3319 - 3321