Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy

被引:107
|
作者
Spruytte, SG
Larson, MC
Wampler, W
Coldren, CW
Petersen, HE
Harris, JS
机构
[1] Stanford Univ, Solid State & Photon Lab, Dept Elect Engn, CISX, Stanford, CA 94305 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Agil Commun, Santa Barbara, CA USA
[4] Sandia Natl Labs, Radiat Solid Interact & Proc Dept 1111, Albuquerque, NM 87185 USA
关键词
characterization; defects; diffusion; molecular beam epitaxy; semiconducting IIIV materials; laser diodes;
D O I
10.1016/S0022-0248(01)00757-6
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Group III-nitride-arsenides are promising materials for long wavelength opto-electronic: devices grown on GaAs substrates. The growth of nitride-arsenides was performed in an elemental solid source molecular beam epitaxy system with a plasma cell to supply reactive nitrogen. Growth is carried out with plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen, as determined from the emission spectrum of the plasma. The group III growth rate controls the nitrogen concentration in the film. The photoluminescence intensity of GaNAs and GaInNAs quantum wells (QWs) increases drastically and shifts to shorter wavelengths following high temperature anneal. Nitrogen diffusion out of the QWs is responsible for the wavelength shift, We observe a decrease of interstitial nitrogen after anneal. Vertical-cavity surface-emitting lasers with GaInNAs QWs demonstrated a continous-wave operation, To limit nitrogen diffusion, the GaAs barriers surrounding the GaInNAs: QWs were replaced by GaNAs barriers, This new active region resulted in devices emitting at 1.3 mum, (C) 2001 Elsevier Science B,V, All rights reserved.
引用
收藏
页码:506 / 515
页数:10
相关论文
共 50 条
  • [21] Degradation of III-nitride laser diodes grown by molecular beam epitaxy
    Xiu, H.
    Thrush, E. J.
    Kauer, M.
    Smeeton, T. M.
    Hooper, S. E.
    Heffernan, J.
    Humphreys, C. J.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 6, 2008, 5 (06): : 2204 - +
  • [22] Incorporation behaviors of group V elements in GaAsSbN grown by gas-source molecular-beam epitaxy
    Ma, Ta-Chun
    Lin, Yan-Ting
    Lin, Hao-Hsiung
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (11) : 2854 - 2858
  • [24] Role of indium on nitrogen incorporation in GaNAs grown by metalorganic molecular-beam epitaxy
    Morooka, N
    Uesugi, K
    Suemune, I
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1999, 38 (11B): : L1309 - L1311
  • [25] Molecular beam epitaxy growth of nitride materials
    Grandjean, N
    Massies, J
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 59 (1-3): : 39 - 46
  • [26] Arsenic incorporation in HgCdTe grown by molecular beam epitaxy
    Aqariden, F
    Wijewarnasuriya, PS
    Sivananthan, S
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03): : 1309 - 1311
  • [27] CHARACTERISTICS OF CARBON INCORPORATION IN GAAS GROWN BY GAS SOURCE MOLECULAR-BEAM EPITAXY
    GOTODA, M
    MARUNO, S
    MORISHITA, Y
    NOMURA, Y
    OGATA, H
    KURAMOTO, K
    KUROKI, H
    JOURNAL OF CRYSTAL GROWTH, 1990, 100 (1-2) : 5 - 10
  • [28] Incorporation of Mg in GaN grown by molecular beam epitaxy
    Univ of Nottingham, Nottingham, United Kingdom
    J Cryst Growth, 1-2 (7-11):
  • [29] IN INCORPORATION IN GAINAS GROWN BY MOLECULAR-BEAM EPITAXY
    WOODBRIDGE, K
    APPLIED PHYSICS LETTERS, 1992, 60 (23) : 2911 - 2913
  • [30] Incorporation of Mg in GaN grown by molecular beam epitaxy
    Orton, JW
    Foxon, CT
    Cheng, TS
    Hooper, SE
    Novikov, SV
    Ber, BY
    Kudriavtsev, YA
    JOURNAL OF CRYSTAL GROWTH, 1999, 197 (1-2) : 7 - 11