Generic bifurcations of control-affine systems in the plane and their properties

被引:0
|
作者
Jakubczyk, B [1 ]
Respondek, W [1 ]
机构
[1] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
来源
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define bifurcations of control-affine systems in the plane and classify all generic 1-parameter bifurcations with nonvanishing control field. More precisely, we classify topological bifurcations of invariants of usual feedback equivalence. There are six such bifurcations: two bifurcations of equilibrium sets, two bifurcations of critical sets and two bifurcations of pairs of invariants. We also analyze how time optimality properties and stabilizability of generic planar families change when the parameter varies.
引用
收藏
页码:3305 / 3310
页数:6
相关论文
共 50 条
  • [41] Koopman Operator Based Observer Synthesis for Control-Affine Nonlinear Systems
    Surana, Amit
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 6492 - 6499
  • [42] Continuous Action Reinforcement Learning for Control-Affine Systems with Unknown Dynamics
    Aleksandra Faust
    Peter Ruymgaart
    Molly Salman
    Rafael Fierro
    Lydia Tapia
    IEEE/CAAJournalofAutomaticaSinica, 2014, 1 (03) : 323 - 336
  • [43] Continuous action reinforcement learning for control-affine systems with unknown dynamics
    Faust, Aleksandra
    Ruymgaart, Peter
    Salman, Molly
    Fierro, Rafael
    Tapia, Lydia
    IEEE/CAA Journal of Automatica Sinica, 2014, 1 (03) : 323 - 336
  • [44] Consensus of Multi-Agent Systems with Control-Affine Nonlinear Dynamics
    Hu, Haiyun
    Yoon, Se Young
    Lin, Zongli
    UNMANNED SYSTEMS, 2016, 4 (01) : 61 - 73
  • [45] Bilinearization, Reachability, and Optimal Control of Control-Affine Nonlinear Systems: A Koopman Spectral Approach
    Goswami, Debdipta
    Paley, Derek A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 2715 - 2728
  • [46] A New Approach for Solving the Optimal Control Problem of Nonlinear Systems in Control-affine Form
    Jajarmi, Amin
    Pariz, Naser
    Kamyad, Ali Vahidian
    Effati, Sohrab
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL II, 2010, : 73 - 76
  • [47] Solving Optimal Control Problems for Delayed Control-Affine Systems with Quadratic Cost by Numerical Continuation
    Bonalli, Riccardo
    Herisse, Bruno
    Trelat, Emmanuel
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 649 - 654
  • [48] Optimal control using an algebraic method for control-affine non-linear systems
    Won, C.-H.
    Biswas, S.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (09) : 1491 - 1502
  • [49] Integrated Guidance and Control of Driftless Control-affine Systems with Control Constraints and State Exclusion Zones
    Dongare, Abhijit
    Sanyal, Amit K.
    Kolmanovsky, Ilya
    Viswanathan, Sasi Prabhakaran
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3893 - 3898
  • [50] Chattering extremals in control-affine stabilization problems
    Melnikov, N. B.
    Ronzhina, M. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2024, 79 (05) : 931 - 933