Generic bifurcations of control-affine systems in the plane and their properties

被引:0
|
作者
Jakubczyk, B [1 ]
Respondek, W [1 ]
机构
[1] Warsaw Univ, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
来源
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define bifurcations of control-affine systems in the plane and classify all generic 1-parameter bifurcations with nonvanishing control field. More precisely, we classify topological bifurcations of invariants of usual feedback equivalence. There are six such bifurcations: two bifurcations of equilibrium sets, two bifurcations of critical sets and two bifurcations of pairs of invariants. We also analyze how time optimality properties and stabilizability of generic planar families change when the parameter varies.
引用
收藏
页码:3305 / 3310
页数:6
相关论文
共 50 条
  • [21] HOLDER EQUIVALENCE OF THE VALUE FUNCTION FOR CONTROL-AFFINE SYSTEMS
    Prandi, Dario
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (04) : 1224 - 1248
  • [22] A condition for dynamic feedback linearization of control-affine nonlinear systems
    Guay, M
    McLellan, PJ
    Bacon, DW
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (01) : 87 - 106
  • [23] Parameter Optimization for Learning-based Control of Control-Affine Systems
    Lederer, Armin
    Capone, Alexandre
    Hirche, Sandra
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 465 - 475
  • [24] Motion planning by the homotopy continuation method for control-affine systems
    Amiss, Scott C.
    Guay, Martin
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1767 - 1772
  • [25] Design of optimal tracking controller for systems with control-affine form
    Zhao, Yandong
    Chen, Xianli
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 2472 - 2476
  • [26] A Generalized-Moment Method for Control-Affine Ensemble Systems
    Kuan, Yuan-Hung
    Ning, Xin
    Li, Jr-Shin
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1654 - 1659
  • [27] Continuous dependence with respect to the input of trajectories of control-affine systems
    Liu, WS
    Sussmann, HJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) : 777 - 803
  • [28] Stabilization of Nonlinear Control-Affine Systems With Multiple State Constraints
    Jhang, Jia-Yao
    Wu, Jenq-Lang
    Yung, Chee-Fai
    IEEE ACCESS, 2020, 8 : 179735 - 179744
  • [29] On trajectory tracking of control-affine nonlinear systems with unreliable communication
    Manjunath, Sreelakshmi
    Zeng, Shen
    IFAC PAPERSONLINE, 2019, 52 (20): : 223 - 228
  • [30] Computing Controlled Invariant Sets of Nonlinear Control-Affine Systems
    Brown, Scott
    Khajenejad, Mohammad
    Yong, Sze Zheng
    Martinez, Sonia
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7830 - 7836