Local Li-Yau's estimates on RCD*(K, N) metric measure spaces

被引:0
|
作者
Zhang, Hui-Chun [1 ]
Zhu, Xi-Ping [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
CURVATURE-DIMENSION CONDITION; CHEEGER-HARMONIC FUNCTIONS; RICCI CURVATURE; RIEMANNIAN-MANIFOLDS; ALEXANDROV SPACES; DIFFERENTIAL EQUATIONS; HARNACK INEQUALITIES; LIPSCHITZ FUNCTIONS; GRADIENT ESTIMATE; DIRICHLET SPACES;
D O I
10.1007/s00526-016-1040-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li-Yau's estimate for weak solutions of the heat equation and prove a sharp Yau's gradient for harmonic functions on metric measure spaces, under the Riemannian curvature-dimension condition RCD*(K, N).
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Improved regularity estimates for Lagrangian flows on RCD(K, N) spaces
    Brue, Elia
    Deng, Qin
    Semola, Daniele
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [32] A DIRECT APPROACH TO SHARP LI-YAU ESTIMATES WITH NEGATIVE RICCI LOWER BOUND
    Song, Xingyu
    Wu, Ling
    Zhu, Meng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 291 - 305
  • [33] Li-Yau Harnack Estimates for a Heat-Type Equation Under the Geometric Flow
    Yi Li
    Xiaorui Zhu
    Potential Analysis, 2020, 52 : 469 - 496
  • [34] NEW CHARACTERIZATIONS OF RICCI CURVATURE ON RCD METRIC MEASURE SPACES
    Han, Bang-Xian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 4915 - 4927
  • [35] Li-Yau Harnack Estimates for a Heat-Type Equation Under the Geometric Flow
    Li, Yi
    Zhu, Xiaorui
    POTENTIAL ANALYSIS, 2020, 52 (03) : 469 - 496
  • [36] Weyl's law on RC D* (K, N) metric measure spaces
    Zhang, Hui-Chun
    Zhu, Xi-Ping
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (08) : 1869 - 1914
  • [37] Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces
    Garofalo, Nicola
    GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 177 - 199
  • [38] Ricci Tensor on RCD*(K, N) Spaces
    Han, Bang-Xian
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1295 - 1314
  • [39] Radial processes on RCD*(K, N) spaces
    Kuwada, Kazumasa
    Kuwae, Kazuhrio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 72 - 108
  • [40] On the isometry group of RCD*(K, N)-spaces
    Guijarro, Luis
    Santos-Rodriguez, Jaime
    MANUSCRIPTA MATHEMATICA, 2019, 158 (3-4) : 441 - 461