Local Li-Yau's estimates on RCD*(K, N) metric measure spaces

被引:0
|
作者
Zhang, Hui-Chun [1 ]
Zhu, Xi-Ping [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
CURVATURE-DIMENSION CONDITION; CHEEGER-HARMONIC FUNCTIONS; RICCI CURVATURE; RIEMANNIAN-MANIFOLDS; ALEXANDROV SPACES; DIFFERENTIAL EQUATIONS; HARNACK INEQUALITIES; LIPSCHITZ FUNCTIONS; GRADIENT ESTIMATE; DIRICHLET SPACES;
D O I
10.1007/s00526-016-1040-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li-Yau's estimate for weak solutions of the heat equation and prove a sharp Yau's gradient for harmonic functions on metric measure spaces, under the Riemannian curvature-dimension condition RCD*(K, N).
引用
收藏
页数:30
相关论文
共 50 条