For a knot K the cube number is a knot invariant defined to be the smallest it for which there is a cube diagram of size n for K. There is also a Legendrian version of this invariant called the Legendrian cube number. We will show that the Legendrian cube number distinguishes the Legendrian left hand torus knots with maximal Thurston-Bennequin number and maximal rotation number from the Legendrian left hand torus knots with maximal Thurston-Bennequin number and minimal rotation number. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Pontificia Univ Catolica Rio de Janeiro, PUG Rio, Dept Matemat, BR-22453 Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, PUG Rio, Dept Matemat, BR-22453 Rio De Janeiro, Brazil
Schweitzer, Paul A. S. J.
Souza, Fabio S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio de Janeiro, UERJ, Fac Formacao Prof, Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, PUG Rio, Dept Matemat, BR-22453 Rio De Janeiro, Brazil
机构:
Peking Univ, Sch Math Sci, 5 Yi He Yuan Rd, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, 5 Yi He Yuan Rd, Beijing 100871, Peoples R China