On the number of spanning trees on various lattices

被引:29
|
作者
Teuf, E. [1 ]
Wagner, S. [2 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
PERCOLATION;
D O I
10.1088/1751-8113/43/41/415001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the number of spanning trees in lattices; for a lattice L, one defines the bulk limit z(L) = lim(vertical bar VG vertical bar ->infinity)(log N(ST)(G))/vertical bar VG vertical bar, where N(ST) (G) is the number of spanning trees in a finite section G of L. Explicit values for z(L) are known in various special cases. In this note we describe a simple yet effective method to deduce relations between the values of z(L) for different lattices L by means of electrical network theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Express the number of spanning trees in term of degrees
    Dong, Fengming
    Ge, Jun
    Ouyang, Zhangdong
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 415
  • [42] Minimal graphs with a prescribed number of spanning trees
    Stong, Richard
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 82 : 182 - 196
  • [43] THE NUMBER OF SPANNING-TREES OF THE REGULAR NETWORKS
    YANG, CS
    WANG, JF
    LEE, JY
    BOESCH, FT
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1988, 23 (3-4) : 185 - 200
  • [45] The Maximum Number of Spanning Trees of a Graph with Given Matching Number
    Muhuo Liu
    Guangliang Zhang
    Kinkar Chandra Das
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3725 - 3732
  • [46] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [47] Spanning trees with large number of end vertices
    Discrete Mathematics and Applications, 2001, 11 (02): : 163 - 171
  • [48] On the number of spanning trees of Knm ± G graphs
    Nikolopoulos, Stavros D.
    Papadopoulos, Charis
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2006, 8 (01): : 235 - 248
  • [49] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [50] THE NUMBER OF SPANNING-TREES IN THE SQUARE OF A CYCLE
    BARON, G
    PRODINGER, H
    TICHY, RF
    BOESCH, FT
    WANG, JF
    FIBONACCI QUARTERLY, 1985, 23 (03): : 258 - 264