On the number of spanning trees on various lattices

被引:29
|
作者
Teuf, E. [1 ]
Wagner, S. [2 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
PERCOLATION;
D O I
10.1088/1751-8113/43/41/415001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the number of spanning trees in lattices; for a lattice L, one defines the bulk limit z(L) = lim(vertical bar VG vertical bar ->infinity)(log N(ST)(G))/vertical bar VG vertical bar, where N(ST) (G) is the number of spanning trees in a finite section G of L. Explicit values for z(L) are known in various special cases. In this note we describe a simple yet effective method to deduce relations between the values of z(L) for different lattices L by means of electrical network theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] COMPARISON OF GRAPHS BY THEIR NUMBER OF SPANNING TREES
    KELMANS, AK
    DISCRETE MATHEMATICS, 1976, 16 (03) : 241 - 261
  • [22] THE NUMBER OF SPANNING TREES OF DOUBLE GRAPHS
    Wu-Xin, Liu
    Fu-Yi, Wei
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (01): : 183 - 190
  • [23] Counting the number of spanning trees of graphs
    Ghorbani, M.
    Bani-Asadi, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01): : 111 - 121
  • [24] The number of spanning trees in Apollonian networks
    Zhang, Zhongzhi
    Wu, Bin
    Comellas, Francesc
    DISCRETE APPLIED MATHEMATICS, 2014, 169 : 206 - 213
  • [25] The number of spanning trees in circulant graphs
    Zhang, YP
    Yong, XR
    Golin, MJ
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 337 - 350
  • [26] ON THE NUMBER OF SPANNING-TREES IN FULLERENES
    MIHALIC, Z
    TRINAJSTIC, N
    FULLERENE SCIENCE AND TECHNOLOGY, 1994, 2 (01): : 89 - 95
  • [27] THE NUMBER OF SPANNING-TREES IN BUCKMINSTERFULLERENE
    BROWN, TJN
    MALLION, RB
    POLLAK, P
    DECASTRO, BRM
    GOMES, JANF
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1991, 12 (09) : 1118 - 1124
  • [28] NUMBER OF SPANNING TREES IN MULTIGRAPH WHEELS
    BEDROSIAN, SD
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1972, CT19 (01): : 77 - +
  • [29] Reinforcing the number of disjoint spanning trees
    Liu, Damin
    Lai, Hong-Jian
    Chen, Zhi-Hong
    ARS COMBINATORIA, 2009, 93 : 113 - 127
  • [30] NUMBER OF SPANNING TREES IN A MOLECULAR GRAPH
    MALLION, RB
    CHEMICAL PHYSICS LETTERS, 1975, 36 (02) : 170 - 174