On the number of spanning trees on various lattices

被引:29
|
作者
Teuf, E. [1 ]
Wagner, S. [2 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Univ Stellenbosch, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
基金
新加坡国家研究基金会;
关键词
PERCOLATION;
D O I
10.1088/1751-8113/43/41/415001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the number of spanning trees in lattices; for a lattice L, one defines the bulk limit z(L) = lim(vertical bar VG vertical bar ->infinity)(log N(ST)(G))/vertical bar VG vertical bar, where N(ST) (G) is the number of spanning trees in a finite section G of L. Explicit values for z(L) are known in various special cases. In this note we describe a simple yet effective method to deduce relations between the values of z(L) for different lattices L by means of electrical network theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Resistance Scaling and the Number of Spanning Trees in Self-Similar Lattices
    Teufl, Elmar
    Wagner, Stephan
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (04) : 879 - 897
  • [2] Resistance Scaling and the Number of Spanning Trees in Self-Similar Lattices
    Elmar Teufl
    Stephan Wagner
    Journal of Statistical Physics, 2011, 142 : 879 - 897
  • [3] Spanning trees on lattices and integral identities
    Chang, Shu-Chiuan
    Wang, Wenya
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33): : 10263 - 10275
  • [4] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    Journal of Inequalities and Applications, 2013
  • [5] The number of spanning trees in a superprism
    Bogdanowicz, Zbigniew R.
    DISCRETE MATHEMATICS LETTERS, 2024, 13 : 66 - 73
  • [6] On the number of spanning trees in fullerenes
    Mihalic, Z., 1600, (02):
  • [7] NUMBER OF SPANNING TREES IN A WHEEL
    MYERS, BR
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (02): : 280 - &
  • [8] On the Number of Spanning Trees of Graphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [9] The number of spanning trees of a graph
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 286 - 290
  • [10] The number of spanning trees of a graph
    Das, Kinkar C.
    Cevik, Ahmet S.
    Cangul, Ismail N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,