Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons

被引:17
|
作者
Matuszewski, M. [1 ]
Opala, A. [1 ]
Mirek, R. [2 ]
Furman, M. [2 ]
Krol, M. [2 ]
Tyszka, K. [2 ]
Liew, T. C. H. [3 ]
Ballarini, D. [4 ]
Sanvitto, D. [4 ,5 ]
Szczytko, J. [2 ]
Pietka, B. [2 ]
机构
[1] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Fac Phys, Inst Expt Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[5] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; ACCELERATOR; INTEGRATION; PHOTONICS; HARDWARE; PARALLEL;
D O I
10.1103/PhysRevApplied.16.024045
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton polaritons allows one to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems
    Putra, Rachmad Vidya Wicaksana
    Hanif, Muhammad Abdullah
    Shafique, Muhammad
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [42] Energy-Efficient High-Accuracy Spiking Neural Network Inference Using Time-Domain Neurons
    Song, Joonghyun
    Shin, Jiwon
    Kim, Hanseok
    Choi, Woo-Seok
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 5 - 8
  • [43] EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM
    Koppula, Skanda
    Orosa, Lois
    Yaglikci, A. Giray
    Azizi, Roknoddin
    Shahroodi, Taha
    Kanellopoulos, Konstantinos
    Mutlu, Onur
    MICRO'52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2019, : 166 - 181
  • [44] An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory
    Xiao, T. Patrick
    Feinberg, Ben
    Bennett, Christopher H.
    Agrawal, Vineet
    Saxena, Prashant
    Prabhakar, Venkatraman
    Ramkumar, Krishnaswamy
    Medu, Harsha
    Raghavan, Vijay
    Chettuvetty, Ramesh
    Agarwal, Sapan
    Marinella, Matthew J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (04) : 1480 - 1493
  • [45] Enabling Energy-Efficient Inference for Self-Attention Mechanisms in Neural Networks
    Chen, Qinyu
    Sun, Congyi
    Lu, Zhonghai
    Gao, Chang
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 25 - 28
  • [46] PIE: A Pipeline Energy-efficient Accelerator for Inference Process in Deep Neural Networks
    Zhao, Yangyang
    Yu, Qi
    Zhou, Xuda
    Zhou, Xuehai
    Wang, Chao
    Li, Xi
    2016 IEEE 22ND INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2016, : 1067 - 1074
  • [47] Energy-Efficient Inference Accelerator for Memory-Augmented Neural Networks on an FPGA
    Park, Seongsik
    Jang, Jaehee
    Kim, Seijoon
    Yoon, Sungroh
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 1587 - 1590
  • [48] EESiamese: Energy-efficient Siamese Neural Network for Constrained Devices
    Calisti, Lorenzo
    Contoli, Chiara
    Di Fabrizio, Giacomo
    Kania, Nicholas
    Lattanzi, Emanuele
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 279 - 286
  • [49] A Speculative Computation Approach for Energy-Efficient Deep Neural Network
    Zheng, Rui-Xuan
    Ko, Ya-Cheng
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (03) : 795 - 806
  • [50] Challenges in Energy-Efficient Deep Neural Network Training with FPGA
    Tao, Yudong
    Ma, Rui
    Shyu, Mei-Ling
    Chen, Shu-Ching
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1602 - 1611