Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons

被引:17
|
作者
Matuszewski, M. [1 ]
Opala, A. [1 ]
Mirek, R. [2 ]
Furman, M. [2 ]
Krol, M. [2 ]
Tyszka, K. [2 ]
Liew, T. C. H. [3 ]
Ballarini, D. [4 ]
Sanvitto, D. [4 ,5 ]
Szczytko, J. [2 ]
Pietka, B. [2 ]
机构
[1] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Fac Phys, Inst Expt Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[5] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; ACCELERATOR; INTEGRATION; PHOTONICS; HARDWARE; PARALLEL;
D O I
10.1103/PhysRevApplied.16.024045
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton polaritons allows one to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Dispersion of bulk exciton polaritons in a GaAs microcavity
    Vladimirova, MR
    Kavokin, AV
    COMPOUND SEMICONDUCTORS 1996, 1997, (155): : 679 - 682
  • [22] Bose condensation of exciton polaritons in an optical microcavity
    Voronova, N. S.
    Lozovik, Yu. E.
    PHYSICS OF THE SOLID STATE, 2008, 50 (08) : 1555 - 1559
  • [23] Exciton-polaritons in ZnO microcavity resonators
    Schmidt-Grund, R.
    Sturm, C.
    Hilmer, H.
    Sellmann, J.
    Czekalla, C.
    Rheinlaender, B.
    Lenzner, J.
    Hochmuth, H.
    Lorenz, M.
    Grundmann, M.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 175 - 176
  • [24] Coherent control of exciton polaritons in a semiconductor microcavity
    Marie, X
    Renucci, P
    Dubourg, S
    Amand, T
    Le Jeune, P
    Barrau, J
    Bloch, J
    Planel, R
    PHYSICAL REVIEW B, 1999, 59 (04): : R2494 - R2497
  • [25] GaAs microcavity exciton-polaritons in a trap
    Kim, Na Young
    Lai, Chih-Wei
    Utsunomiya, Shoko
    Roumpos, Georgios
    Fraser, Michael
    Deng, Hui
    Byrnes, Tim
    Recher, Patrik
    Kumada, Norio
    Fujisawa, Toshimasa
    Yamamoto, Yoshihisa
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (06): : 1076 - 1080
  • [26] Dispersion of bulk exciton polaritons in a semiconductor microcavity
    Vladimirova, MR
    Kavokin, AV
    Kaliteevski, MA
    PHYSICAL REVIEW B, 1996, 54 (20): : 14566 - 14571
  • [28] An Energy-Efficient Deep Neural Network Accelerator Design
    Jung, Jueun
    Lee, Kyuho Jason
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 272 - 276
  • [29] An Approach of Binary Neural Network Energy-Efficient Implementation
    Gao, Jiabao
    Liu, Qingliang
    Lai, Jinmei
    ELECTRONICS, 2021, 10 (15)
  • [30] xTern: Energy-Efficient Ternary Neural Network Inference on RISC-V-Based Edge Systems
    Rutishauser, Georg
    Mihali, Joan
    Scherer, Moritz
    Benini, Luca
    2024 IEEE 35TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, ASAP 2024, 2024, : 206 - 213