Energy-Efficient Neural Network Inference with Microcavity Exciton Polaritons

被引:17
|
作者
Matuszewski, M. [1 ]
Opala, A. [1 ]
Mirek, R. [2 ]
Furman, M. [2 ]
Krol, M. [2 ]
Tyszka, K. [2 ]
Liew, T. C. H. [3 ]
Ballarini, D. [4 ]
Sanvitto, D. [4 ,5 ]
Szczytko, J. [2 ]
Pietka, B. [2 ]
机构
[1] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Fac Phys, Inst Expt Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore
[4] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[5] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; ACCELERATOR; INTEGRATION; PHOTONICS; HARDWARE; PARALLEL;
D O I
10.1103/PhysRevApplied.16.024045
中图分类号
O59 [应用物理学];
学科分类号
摘要
We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton polaritons allows one to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Microcavity exciton polaritons
    Zhang, Long
    Hu, Jiaqi
    Deng, Hui
    SEMICONDUCTOR QUANTUM SCIENCE AND TECHNOLOGY, 2020, 105 : 29 - 87
  • [2] Microcavity exciton polaritons
    不详
    SEMICONDUCTOR CAVITY QUANTUM ELECTRODYNAMICS, 2000, 169 : 25 - 48
  • [3] The Perfect Match: Selecting Approximate Multipliers for Energy-Efficient Neural Network Inference
    Spantidi, Ourania
    Anagnostopoulos, Iraklis
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [4] Weight-Oriented Approximation for Energy-Efficient Neural Network Inference Accelerators
    Tasoulas, Zois-Gerasimos
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Amrouch, Hussam
    Henkel, Jorg
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) : 4670 - 4683
  • [5] An Energy-Efficient Method for Recurrent Neural Network Inference in Edge Cloud Computing
    Chen, Chao
    Guo, Weiyu
    Wang, Zheng
    Yang, Yongkui
    Wu, Zhuoyu
    Li, Guannan
    SYMMETRY-BASEL, 2022, 14 (12):
  • [6] An Energy-Efficient Inference Engine for a Configurable ReRAM-Based Neural Network Accelerator
    Zheng, Yang-Lin
    Yang, Wei-Yi
    Chen, Ya-Shu
    Han, Ding-Hung
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (03) : 740 - 753
  • [7] Energy-efficient cooperative inference via adaptive deep neural network splitting at the edge
    Labriji, Ibtissam
    Merluzzi, Mattia
    Airod, Fatima Ezzahra
    Strinati, Emilio Calvanese
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1712 - 1717
  • [8] Competitive Hyperparameter Balancing on Spiking Neural Network for a Fast, Accurate and Energy-Efficient Inference
    Kim, Jeongho
    Kim, Dae-Shik
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 44 - 53
  • [9] Condensation of semiconductor microcavity exciton polaritons
    Deng, H
    Weihs, G
    Santori, C
    Bloch, J
    Yamamoto, Y
    SCIENCE, 2002, 298 (5591) : 199 - 202
  • [10] Characteristics of exciton polaritons in a ZnO microcavity
    Kawase, Toshiki
    Komura, Shingo
    Miyazaki, Kenichi
    Kim, DaeGwi
    Nakayama, Masaaki
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (10): : 2567 - 2570