Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism

被引:72
|
作者
Lai, Deng-Gao [1 ,2 ,3 ]
Liao, Jie-Qiao [1 ,2 ]
Miranowicz, Adam [3 ,4 ]
Nori, Franco [3 ,5 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Matter Microstruct & Funct Hunan Prov, Minist Educ,Key Lab Low Dimens Quantum Struct & Q, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[3] RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[4] Adam Mickiewicz Univ, Fac Phys, Inst Spintron & Quantum Informat, PL-61614 Poznan, Poland
[5] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 日本科学技术振兴机构; 日本学术振兴会;
关键词
QUANTUM ENTANGLEMENT; GROUND-STATE; PHOTONS; PHONONS; ATOM; MIRRORS; SYSTEM; MOTION; LIGHT;
D O I
10.1103/PhysRevLett.129.063602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement of light and multiple vibrations is a key resource for multichannel quantum information processing and memory. However, entanglement generation is generally suppressed, or even fully destroyed, by the dark-mode (DM) effect induced by the coupling of multiple degenerate or near -degenerate vibrational modes to a common optical mode. Here we propose how to generate optomechanical entanglement via DM breaking induced by synthetic magnetism. We find that at nonzero temperature, light and vibrations are separable in the DM-unbreaking regime but entangled in the DM-breaking regime. Remarkably, the threshold thermal phonon number for preserving entanglement in our simulations has been observed to be up to 3 orders of magnitude stronger than that in the DM-unbreaking regime. The application of the DM-breaking mechanism to optomechanical networks can make noise-tolerant entanglement networks feasible. These results are quite general and can initiate advances in quantum resources with immunity against both dark modes and thermal noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A new noise-tolerant dynamic logic circuit design
    Frustaci, Fabio
    Corsonello, Pasquale
    Cocorullo, Giuseppe
    2007 PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2007, : 233 - 236
  • [42] A new architecture for designing noise-tolerant digital circuits
    Lakes, Jeremy M.
    Lee, Samuel C.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2011, 2011, 7980
  • [43] High-accurate and Noise-tolerant Texture Descriptor
    Akoushideh, Alireza
    Maybodi, Babak Mazloom-nezhad
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [44] Noise-tolerant recursive best-first induction
    Pompe, U
    MACHINE LEARNING, PROCEEDINGS, 1999, : 315 - 324
  • [45] Noise-tolerant stimulus discrimination by synchronization with depressing synapses
    Fukai, T
    Kanemura, S
    BIOLOGICAL CYBERNETICS, 2001, 85 (02) : 107 - 116
  • [46] Noise-tolerant similarity search in temporal medical data
    Bonomi, Luca
    Fan, Liyue
    Jiang, Xiaoqian
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 113
  • [47] Local binary patterns for noise-tolerant sEMG classification
    Tabatabaei, Sayed Mohamad
    Chalechale, Abdolah
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (03) : 491 - 498
  • [48] Noise-Tolerant Time-Domain Speech Separation with Noise Bases
    Ozamoto, Kohei
    Uto, Kuniaki
    Iwano, Koji
    Shinoda, Koichi
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 624 - 629
  • [49] Local binary patterns for noise-tolerant sEMG classification
    Sayed Mohamad Tabatabaei
    Abdolah Chalechale
    Signal, Image and Video Processing, 2019, 13 : 491 - 498
  • [50] Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast
    Chaisupa, Patarasuda
    Rahman, Md Mahbubur
    Hildreth, Sherry B.
    Moseley, Saede
    Gatling, Chauncey
    Bryant, Matthew R.
    Helm, Richard F.
    Wright, R. Clay
    ACS SYNTHETIC BIOLOGY, 2024, 13 (09): : 2804 - 2819