Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism

被引:72
|
作者
Lai, Deng-Gao [1 ,2 ,3 ]
Liao, Jie-Qiao [1 ,2 ]
Miranowicz, Adam [3 ,4 ]
Nori, Franco [3 ,5 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Matter Microstruct & Funct Hunan Prov, Minist Educ,Key Lab Low Dimens Quantum Struct & Q, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[3] RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[4] Adam Mickiewicz Univ, Fac Phys, Inst Spintron & Quantum Informat, PL-61614 Poznan, Poland
[5] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 日本科学技术振兴机构; 日本学术振兴会;
关键词
QUANTUM ENTANGLEMENT; GROUND-STATE; PHOTONS; PHONONS; ATOM; MIRRORS; SYSTEM; MOTION; LIGHT;
D O I
10.1103/PhysRevLett.129.063602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement of light and multiple vibrations is a key resource for multichannel quantum information processing and memory. However, entanglement generation is generally suppressed, or even fully destroyed, by the dark-mode (DM) effect induced by the coupling of multiple degenerate or near -degenerate vibrational modes to a common optical mode. Here we propose how to generate optomechanical entanglement via DM breaking induced by synthetic magnetism. We find that at nonzero temperature, light and vibrations are separable in the DM-unbreaking regime but entangled in the DM-breaking regime. Remarkably, the threshold thermal phonon number for preserving entanglement in our simulations has been observed to be up to 3 orders of magnitude stronger than that in the DM-unbreaking regime. The application of the DM-breaking mechanism to optomechanical networks can make noise-tolerant entanglement networks feasible. These results are quite general and can initiate advances in quantum resources with immunity against both dark modes and thermal noise.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optimizing Simulations with Noise-Tolerant Structured Exploration
    Choromanski, Krzysztof
    Iscen, Atil
    Sindhwani, Vikas
    Tan, Jie
    Coumans, Erwin
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2970 - 2977
  • [22] Noise-tolerant 3D Imaging
    Rehain, Patrick
    Sua, Yong Meng
    Zhu, Shenyu
    Dickson, Ivan
    Muthuswamy, Bharathwaj
    Ramanathan, Jeevanandha
    Shahverdi, Amin
    Huang, Yuping
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [23] A noise-tolerant dynamic circuit design technique
    Balamurugan, G
    Shanbhag, NR
    PROCEEDINGS OF THE IEEE 2000 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2000, : 425 - 428
  • [24] Blind and Noise-Tolerant Modulation Format Identification
    Zhang, Junfeng
    Gao, Mingyi
    Chen, Wei
    Ye, Yang
    Ma, Yuanyuan
    Yan, Yonghu
    Ren, Hongliang
    Shen, Gangxiang
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (21) : 1850 - 1853
  • [25] Noise-Tolerant Superconducting Gates with High Fidelity
    Khan, Junaid
    Akram, Javed
    JOURNAL OF RUSSIAN LASER RESEARCH, 2023, 44 (02) : 135 - 147
  • [26] Agreement or Disagreement in Noise-tolerant Mutual Learning?
    Liu, Jiarun
    Jiang, Daguang
    Yang, Yukun
    Li, Ruirui
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4801 - 4807
  • [27] Deep learning for noise-tolerant RDFS reasoning
    Makni, Bassem
    Hendler, James
    SEMANTIC WEB, 2019, 10 (05) : 823 - 862
  • [28] New Noise-Tolerant Dynamic Circuit Design
    Su, Wei
    Jia, Song
    Li, Xiayu
    Liu, Limin
    Wang, Yuan
    2009 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC 2009), 2009, : 254 - +
  • [29] Noise-tolerant parallel learning of geometric concepts
    Bshouty, NH
    Goldman, SA
    Mathias, HD
    INFORMATION AND COMPUTATION, 1998, 147 (01) : 89 - 110
  • [30] Noise-Tolerant Superconducting Gates with High Fidelity
    Junaid Khan
    Javed Akram
    Journal of Russian Laser Research, 2023, 44 : 135 - 147