Engineering Escherichia coli for autoinducible production of n-butanol

被引:14
|
作者
Wang, Qinglong [1 ,2 ]
ding, Yi [2 ]
Liu, Li [2 ]
Shi, Jiping [2 ,3 ]
Sun, Junsong [2 ,3 ]
Xue, Yongchang [1 ]
机构
[1] Dalian Polytech Univ, Sch Biol Engn, Dalian 116034, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Biorefinery Lab, Shanghai 201210, Peoples R China
[3] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
来源
ELECTRONIC JOURNAL OF BIOTECHNOLOGY | 2015年 / 18卷 / 02期
基金
中国国家自然科学基金;
关键词
Anaerobic promoter; Escherichia coli; Metabolic engineering; n-Butanol; Recombination; FERMENTATION; EXPRESSION; GENES;
D O I
10.1016/j.ejbt.2015.01.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Escherichia coli does not produce n-butanol naturally, but can be butanologenic when related enzymes were expressed using inducible elements on plasmids. In this study we attempted to confer E. coli strain capability of automatic excretion of the chemical by employing a native anaerobic promoter. Also, a novel DNA kit was designed for PCR preparation of linear DNA fragments to perform strain modification. The kit is primarily composed of two mother vectors, co-transformation of linear DNAs into E. coli can simultaneously introduce two butanol synthetic operons into the chromosome and create two in-frame gene deletions at targeted native loci. Results: E. coli strain Bw2V carries plasmid pCNA-PHC and pENA-TA, both utilizes native anaerobic promoter P-hya for the expression of butanol synthetic enzymes. When Bw2V was subjected in anaerobic fermentation using medium containing extra glucose, the accumulated n-butanol in the broth was up to 2.8 g/L in bioreactor; as the genetic element expressing the same pathway was introduced into the genome, the titer of butanol was 1.4 g/L. Conclusions: The expression system using P-hya is effective in applications that involve expression plasmids as also applicable in ectopic expression as single copy on the chromosome. Results imply that P-hya can be subjected for broader application in bioproduction of more feedstock chemicals. (C) 2015 Pontificia Universidad Catolica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 142
页数:5
相关论文
共 50 条
  • [41] Progress in the production and application of n-butanol as a biofuel
    Jin, Chao
    Yao, Mingfa
    Liu, Haifeng
    Lee, Chia-fon F.
    Ji, Jing
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (08): : 4080 - 4106
  • [42] N-BUTANOL
    不详
    HYDROCARBON PROCESSING, 1973, 52 (11): : 107 - 107
  • [43] N-butanol
    Anon
    Chemical Market Reporter, 2002, 262 (15):
  • [44] Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones
    Guochao Xu
    Lin Xiao
    Anning Wu
    Ruizhi Han
    Ye Ni
    Applied Biochemistry and Biotechnology, 2021, 193 : 257 - 270
  • [45] In vitro production of n-butanol from glucose
    Krutsakorn, Borimas
    Honda, Kohsuke
    Ye, Xiaoting
    Imagawa, Takashi
    Bei, Xiaoyu
    Okano, Kenji
    Ohtake, Hisao
    METABOLIC ENGINEERING, 2013, 20 : 84 - 91
  • [46] Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol
    Connor, Michael R.
    Liao, James C.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (18) : 5769 - 5775
  • [47] Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production
    Xu, Mengmeng
    Zhao, Jingbo
    Yu, Le
    Tang, I-Ching
    Xue, Chuang
    Yang, Shang-Tian
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (02) : 1011 - 1022
  • [48] Engineering acetogenic Clostridia for ethanol and n-butanol production from CO2
    Chen, Chih-Chin
    Yang, Shang-Tian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [49] Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production
    Mengmeng Xu
    Jingbo Zhao
    Le Yu
    I-Ching Tang
    Chuang Xue
    Shang-Tian Yang
    Applied Microbiology and Biotechnology, 2015, 99 : 1011 - 1022
  • [50] Engineering acetogenic Clostridia for ethanol and n-butanol production from CO2
    Chen, Chih-Chin
    Yang, Shang-Tian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247