Engineering Escherichia coli for autoinducible production of n-butanol

被引:14
|
作者
Wang, Qinglong [1 ,2 ]
ding, Yi [2 ]
Liu, Li [2 ]
Shi, Jiping [2 ,3 ]
Sun, Junsong [2 ,3 ]
Xue, Yongchang [1 ]
机构
[1] Dalian Polytech Univ, Sch Biol Engn, Dalian 116034, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Biorefinery Lab, Shanghai 201210, Peoples R China
[3] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
来源
ELECTRONIC JOURNAL OF BIOTECHNOLOGY | 2015年 / 18卷 / 02期
基金
中国国家自然科学基金;
关键词
Anaerobic promoter; Escherichia coli; Metabolic engineering; n-Butanol; Recombination; FERMENTATION; EXPRESSION; GENES;
D O I
10.1016/j.ejbt.2015.01.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Escherichia coli does not produce n-butanol naturally, but can be butanologenic when related enzymes were expressed using inducible elements on plasmids. In this study we attempted to confer E. coli strain capability of automatic excretion of the chemical by employing a native anaerobic promoter. Also, a novel DNA kit was designed for PCR preparation of linear DNA fragments to perform strain modification. The kit is primarily composed of two mother vectors, co-transformation of linear DNAs into E. coli can simultaneously introduce two butanol synthetic operons into the chromosome and create two in-frame gene deletions at targeted native loci. Results: E. coli strain Bw2V carries plasmid pCNA-PHC and pENA-TA, both utilizes native anaerobic promoter P-hya for the expression of butanol synthetic enzymes. When Bw2V was subjected in anaerobic fermentation using medium containing extra glucose, the accumulated n-butanol in the broth was up to 2.8 g/L in bioreactor; as the genetic element expressing the same pathway was introduced into the genome, the titer of butanol was 1.4 g/L. Conclusions: The expression system using P-hya is effective in applications that involve expression plasmids as also applicable in ectopic expression as single copy on the chromosome. Results imply that P-hya can be subjected for broader application in bioproduction of more feedstock chemicals. (C) 2015 Pontificia Universidad Catolica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 142
页数:5
相关论文
共 50 条
  • [31] Metabolic engineering of cellulolytic Clostridia for n-butanol production from lignocellulosic biomass
    Yang, Xiaorui
    Yang, Shang-Tian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [32] Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase
    Yu, Le
    Zhao, Jingbo
    Xu, Mengmeng
    Dong, Jie
    Varghese, Saju
    Yu, Mingrui
    Tang, I-Ching
    Yang, Shang-Tian
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (11) : 4917 - 4930
  • [33] Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose
    Stefan Marcus Gaida
    Andrea Liedtke
    Andreas Heinz Wilhelm Jentges
    Benedikt Engels
    Stefan Jennewein
    Microbial Cell Factories, 15
  • [34] Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase
    Le Yu
    Jingbo Zhao
    Mengmeng Xu
    Jie Dong
    Saju Varghese
    Mingrui Yu
    I-Ching Tang
    Shang-Tian Yang
    Applied Microbiology and Biotechnology, 2015, 99 : 4917 - 4930
  • [35] Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice
    Zhang, Jianzhi
    Yu, Le
    Xu, Mengmeng
    Yang, Shang-Tian
    Yan, Qiaojuan
    Lin, Meng
    Tang, I-Ching
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (10) : 4327 - 4337
  • [36] Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose
    Gaida, Stefan Marcus
    Liedtke, Andrea
    Jentges, Andreas Heinz Wilhelm
    Engels, Benedikt
    Jennewein, Stefan
    MICROBIAL CELL FACTORIES, 2016, 15
  • [37] Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice
    Jianzhi Zhang
    Le Yu
    Mengmeng Xu
    Shang-Tian Yang
    Qiaojuan Yan
    Meng Lin
    I-Ching Tang
    Applied Microbiology and Biotechnology, 2017, 101 : 4327 - 4337
  • [38] Engineering acetogenic Clostridia for n-butanol production from CO2
    Chen, Chih-Chin
    Yang, Shang-Tian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [39] Metabolic engineering of Clostridium tyrobutyricum for improved n-butanol production from glucose
    Yu, Le
    Zhao, Jingbo
    Yang, Shang-Tian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [40] Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli
    Reyes, Luis H.
    Almario, Maria P.
    Winkler, James
    Orozco, Margarita M.
    Kao, Katy C.
    METABOLIC ENGINEERING, 2012, 14 (05) : 579 - 590