High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

被引:1
|
作者
Lee, Sang-Jun [1 ,7 ]
Adams, Joseph S. [1 ,2 ,3 ]
Bandler, Simon R. [1 ]
Betancourt-Martinez, Gabriele L. [1 ,4 ]
Chervenak, James A. [1 ]
Eckart, Megan E. [1 ]
Finkbeiner, Fred M. [1 ,5 ]
Kelley, Richard L. [1 ]
Kilbourne, Caroline A. [1 ]
Porter, Frederick S. [1 ]
Sadleir, John E. [1 ]
Smith, Stephen J. [1 ,2 ,3 ]
Wassell, Edward J. [1 ,6 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] CRESST, Baltimore, MD 21250 USA
[3] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
[4] Univ Maryland, College Pk, MD 20742 USA
[5] Wyle Informat Syst, Mclean, VA 22102 USA
[6] SGT Inc, Seabrook, MD 20706 USA
[7] Stanford Univ, Stanford, CA 94305 USA
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2017年 / 30卷 / 10期
关键词
superconducting transition-edge sensor; x-ray spectroscopy; high count rate; high energy resolution; EDGE SENSORS; SPECTROSCOPY; RESOLUTION;
D O I
10.1088/1361-6668/aa83d2
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T-c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T(c)s had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T-c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025. Hz per pixel with the higher T-c (faster) device, and 5.8. eV FWHM with 97% throughput with the lower T-c (slower) device at 722 Hz.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Energy Calibration of High-Resolution X-Ray TES Microcalorimeters With 3 eV Optical Photons
    Jaeckel, F. T.
    Ambarish, C., V
    Christensen, N.
    Gruenke, R.
    Hu, L.
    McCammon, D.
    McPheron, M.
    Meyer, M.
    Nelms, K. L.
    Roy, A.
    Wulf, D.
    Zhang, S.
    Zhou, Y.
    Adams, J. S.
    Bandler, S. R.
    Chervenak, J. A.
    Datesman, A. M.
    Eckart, M. E.
    Ewin, A. J.
    Finkbeiner, F. M.
    Kelley, R.
    Kilbourne, C. A.
    Miniussi, A. R.
    Porter, F. S.
    Sadleir, J. E.
    Sakai, K.
    Smith, S. J.
    Wakeham, N.
    Wassell, E.
    Yoon, W.
    Morgan, K. M.
    Schmidt, D. R.
    Swetz, D. S.
    Ullom, J. N.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [32] FAST, VARIABLE APERTURES IN COUNT-RATE OPTIMIZED X-RAY AND PARTICLE DIAGNOSTIC INSTRUMENTS FOR FUSION
    MUNCH, J
    HILL, D
    HIGGINS, L
    KIRKWOOD, R
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1985, 56 (05): : 966 - 968
  • [33] Large-Absorber TES X-ray Microcalorimeters and the Micro-X Detector Array
    Eckart, M. E.
    Adams, J. S.
    Bandler, S. R.
    Brekosky, R. P.
    Brown, A-D
    Chervenak, J. A.
    Ewin, A. J.
    Finkbeiner, F. M.
    Kelley, R. L.
    Kilbourne, C. A.
    Porter, F. S.
    Sadleir, J. E.
    Smith, S. J.
    Figueroa-Feliciano, E.
    Wikus, P.
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 699 - +
  • [34] Development of High Count-Rate Digital Processing System with SpaceWire for TES-Calorimeter Array
    T. Hagihara
    K. Mitsuda
    N. Y. Yamasaki
    M. Nomachi
    M. Kokubun
    Y. Takei
    T. Yuasa
    H. Odaka
    Journal of Low Temperature Physics, 2008, 151 : 997 - 1002
  • [35] Simulation of TES X-ray Microcalorimeters Designed for 14.4 keV Solar Axion Search
    Shohei Mori
    Y. Nishida
    N. Iyomoto
    Y. Yagi
    R. Konno
    T. Hayashi
    K. Tanaka
    N. Y. Yamasaki
    K. Mitsuda
    R. Sato
    M. Saito
    T. Homma
    Journal of Low Temperature Physics, 2022, 209 : 518 - 524
  • [36] Simulation of TES X-ray Microcalorimeters Designed for 14.4 keV Solar Axion Search
    Mori, Shohei
    Nishida, Y.
    Iyomoto, N.
    Yagi, Y.
    Konno, R.
    Hayashi, T.
    Tanaka, K.
    Yamasaki, N. Y.
    Mitsuda, K.
    Sato, R.
    Saito, M.
    Homma, T.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (3-4) : 518 - 524
  • [37] Development of high count-rate digital processing system with SpaceWire for TES-calorimeter array
    Hagihara, T.
    Mitsuda, K.
    Yamasaki, N. Y.
    Nomachi, M.
    Kokubun, M.
    Takei, Y.
    Yuasa, T.
    Odaka, H.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (3-4) : 997 - 1002
  • [38] STUDY OF A MULTIWIRE PROPORTIONAL CHAMBER AS HIGH COUNT RATE X-RAY DETECTOR
    ALDARGAZELLI, SS
    ARIYARATNE, TR
    BREARE, JM
    NANDI, BC
    VERRELLS, MV
    NUCLEAR INSTRUMENTS & METHODS, 1978, 156 (1-2): : 63 - 66
  • [39] Identification of soft high galactic latitude RASS X-ray sources - I. A complete count-rate limited sample
    Thomas, HC
    Beuermann, K
    Reinsch, K
    Schwope, AD
    Trumper, J
    Voges, W
    ASTRONOMY & ASTROPHYSICS, 1998, 335 (02) : 467 - 478
  • [40] Superconducting transition-edge microcalorimeters for X-ray microanalysis
    Hilton, GC
    Wollman, DA
    Irwin, KD
    Dulcie, LL
    Bergren, NF
    Martinis, JM
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) : 3177 - 3181