On the inverse homogenization problem of linear composite materials

被引:0
|
作者
Weiglhofer, WS [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
composite materials; electromagnetic properties; electromagnetic constitutive relations;
D O I
10.1002/1098-2760(20010320)28:6<421::AID-MOP1059>3.0.CO;2-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The standard problem of homogenization consists of a derivation or estimation of the electromagnetic constitutive properties of a composite material In that approach, the constitutive properties of the constituent materials las specified bl their respective permittivity, permeability, and magnetoelectric dyadics), their mixing ratios, and certain geometrical properties pertaining to the constituents are known. Here, the inverse problem is pursued: What information about the electromagnetic constitutive parameters of one of the constituent materials in a two-component mixture can be extracted from a knowledge of the constitutive properties of the homogenized composite medium and those of the other component material? This approach is called the inverse homogenization problem, and it is studied within the framework of linear homogenization through the Maxwell Garnett and the Bruggeman formalisms. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:421 / 423
页数:3
相关论文
共 50 条
  • [42] Inverse problem in materials science
    Rudnyi, EB
    Kuzmenko, VV
    Voronin, GF
    MOLECULAR SIMULATION, 2000, 24 (1-3) : 191 - 196
  • [43] Analytical homogenization method for periodic composite materials
    Chen, Ying
    Schuh, Christopher A.
    PHYSICAL REVIEW B, 2009, 79 (09)
  • [44] A model of homogenization of thermal transfers in composite materials
    Bouayad, H.
    Abdelmounim, E.
    Aboulfatah, M.
    2003, AMSE Press (72): : 3 - 4
  • [45] HOMOGENIZATION IN THERMOELASTICITY - APPLICATION TO COMPOSITE-MATERIALS
    PEYROUX, R
    LICHT, C
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1623 - 1626
  • [46] THE INVERSE PROBLEM FOR BIAXIAL MATERIALS
    DAMASKOS, NJ
    MACK, RB
    MAFFETT, AL
    PARMON, W
    USLENGHI, PLE
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1984, 32 (04) : 400 - 405
  • [47] INVERSE PROBLEMS IN THE LIGHT OF HOMOGENIZATION METHODS: IDENTIFICATION OF A COMPOSITE MICROSTRUCTURE
    Wojciechowski, Marek
    Lefik, Marek
    Boso, Daniela P.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2022, 20 (05) : 33 - 51
  • [48] Symmetry considerations for topology design in the elastic inverse homogenization problem
    Podesta, J. M.
    Mendez, C. M.
    Toro, S.
    Huespe, A. E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 128 (54-78) : 54 - 78
  • [49] Optimally Designed Microstructures of Electromagnetic Materials via Inverse Homogenization
    El-Kahlout, Yasser
    Kiziltas, Gullu
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 785 - 788
  • [50] HOMOGENIZATION OF THE STEFAN PROBLEM AND APPLICATION TO MAGNETIC COMPOSITE MEDIA
    BOSSAVIT, A
    DAMLAMIAN, A
    IMA JOURNAL OF APPLIED MATHEMATICS, 1981, 27 (03) : 319 - 334