On the inverse homogenization problem of linear composite materials

被引:0
|
作者
Weiglhofer, WS [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
composite materials; electromagnetic properties; electromagnetic constitutive relations;
D O I
10.1002/1098-2760(20010320)28:6<421::AID-MOP1059>3.0.CO;2-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The standard problem of homogenization consists of a derivation or estimation of the electromagnetic constitutive properties of a composite material In that approach, the constitutive properties of the constituent materials las specified bl their respective permittivity, permeability, and magnetoelectric dyadics), their mixing ratios, and certain geometrical properties pertaining to the constituents are known. Here, the inverse problem is pursued: What information about the electromagnetic constitutive parameters of one of the constituent materials in a two-component mixture can be extracted from a knowledge of the constitutive properties of the homogenized composite medium and those of the other component material? This approach is called the inverse homogenization problem, and it is studied within the framework of linear homogenization through the Maxwell Garnett and the Bruggeman formalisms. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:421 / 423
页数:3
相关论文
共 50 条
  • [21] A basic inverse problem in the magnetic force microscopy of linear magnetic materials
    Coffey, MW
    INVERSE PROBLEMS, 1997, 13 (05) : 1223 - 1237
  • [22] Forward and inverse homogenization of the electromagnetic properties of a quasiperiodic composite
    Cherkaev, Elena
    Guenneau, Sebastien
    Wellander, Niklas
    2019 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2019,
  • [23] HOMOGENIZATION OF THE TRANSMISSION EIGENVALUE PROBLEM FOR PERIODIC MEDIA AND APPLICATION TO THE INVERSE PROBLEM
    Cakoni, Fioralba
    Haddar, Houssem
    Harris, Isaac
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (04) : 1025 - 1049
  • [24] The design of functional gradient materials with inverse homogenization method
    Zhou, Shiwei
    Li, Qing
    FRONTIERS IN MATERIALS SCIENCE AND TECHNOLOGY, 2008, 32 : 245 - +
  • [25] On an Inverse Linear Programming Problem
    Amirkhanova, G. A.
    Golikov, A. I.
    Evtushenko, Yu. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) : S21 - S27
  • [26] Inverse Problem of Linear Regression
    Zhong, Xu Ping
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 1, 2009, : 501 - 504
  • [27] DECONVOLUTION - A LINEAR INVERSE PROBLEM
    OLDENBURG, DW
    GEOPHYSICS, 1980, 45 (04) : 531 - 531
  • [28] On an inverse linear programming problem
    Amirkhanova, G. A.
    Golikov, A., I
    Evtushenko, Yu G.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (03): : 13 - 19
  • [29] On an inverse linear programming problem
    G. A. Amirkhanova
    A. I. Golikov
    Yu. G. Evtushenko
    Proceedings of the Steklov Institute of Mathematics, 2016, 295 : 21 - 27
  • [30] A one-dimensional inverse problem in composite materials: Regularization and error estimates
    Xiong, X. T.
    Shi, W. X.
    Hon, Y. C.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (18) : 5480 - 5494