Complexity limitations on quantum computation

被引:13
|
作者
Fortnow, L [1 ]
Rogers, J [1 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
关键词
D O I
10.1109/CCC.1998.694606
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We use the powerful tools of counting complexity and generic oracles to help, understand the limitations of the complexity of quantum computation. We show several results for the probabilistic quantum class BQP. BQP is low for PP, i.e., PPBQP = PP. There exists a relativized world where P = BQP and the polynomial-time hierarchy is infinite. There exists a relativized world where BQP does not have complete sets. There exists a relativized world where P = BQP but P ir UP boolean AND coUP and one-way functions exist. This gives a relativized answer to an open question of Simon.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [1] Complexity limitations on quantum computation
    Fortnow, L
    Rogers, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 59 (02) : 240 - 252
  • [2] COMPLEXITY CONSIDERATIONS QUANTUM COMPUTATION
    Accardi, Luigi
    QUANTUM BIO-INFORMATICS V, 2013, 30 : 1 - 13
  • [3] Complexity of chaos and quantum computation
    Georgeot, Bertrand
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (06) : 1221 - 1263
  • [4] State complexity and quantum computation
    Cai, Yu
    Le, Huy Nguyen
    Scarani, Valerio
    ANNALEN DER PHYSIK, 2015, 527 (9-10) : 684 - 700
  • [5] On the Round Complexity of Secure Quantum Computation
    Bartusek, James
    Coladangelo, Andrea
    Khurana, Dakshita
    Ma, Fermi
    ADVANCES IN CRYPTOLOGY (CRYPTO 2021), PT I, 2021, 12825 : 406 - 435
  • [6] Limitations on transversal computation through quantum homomorphic encryption
    Newman, Michael
    Shi, Yaoyun
    Quantum Information and Computation, 2018, 18 (11-12): : 927 - 948
  • [8] LIMITATIONS ON TRANSVERSAL COMPUTATION THROUGH QUANTUM HOMOMORPHIC ENCRYPTION
    Newman, Michael
    Shi, Yaoyun
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (11-12) : 927 - 948
  • [9] A general theory of quantum codes connecting quantum computation, complexity and physics
    Yi, Jinmin
    Liu, Zi-Wen
    NATURE PHYSICS, 2024, 20 (11) : 1708 - 1709
  • [10] Complexity for the Approximation of Sobolev Imbeddings in the Quantum Computation Model
    Long Jingfan
    Ye Peixin
    Yuan Xiuhua
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 5319 - 5323