Limitations on transversal computation through quantum homomorphic encryption

被引:0
|
作者
Newman, Michael [1 ]
Shi, Yaoyun [2 ]
机构
[1] Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor,MI,48109, United States
[2] Alibaba Quantum Laboratory, Alibaba Group USA, 500 108th Ave NE, Bellevue,WA,98004, United States
来源
Quantum Information and Computation | 2018年 / 18卷 / 11-12期
基金
美国国家科学基金会;
关键词
Codes (symbols) - Quantum noise - Quantum cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
Transversality is a simple and effective method for implementing quantum computation fault-tolerantly. However, no quantum error-correcting code (QECC) can transversally implement a quantum universal gate set (Eastin and Knill, Phys. Rev. Lett., 102, 110502). Since reversible classical computation is often a dominating part of useful quantum computation, whether or not it can be implemented transversally is an important open problem. We show that, other than a small set of non-additive codes that we cannot rule out, no binary QECC can transversally implement a classical reversible universal gate set. In particular, no such QECC can implement the Toffoli gate transversally. We prove our result by constructing an information theoretically secure (but inef-ficient) quantum homomorphic encryption (ITS-QHE) scheme inspired by Ouyang et al. (arXiv:1508.00938). Homomorphic encryption allows the implementation of certain functions directly on encrypted data, i.e. homomorphically. Our scheme builds on almost any QECC, and implements that code’s transversal gate set homomorphically. We observe a restriction imposed by Nayak’s bound (FOCS 1999) on ITS-QHE, implying that any ITS quantum fully homomorphic scheme (ITS-QFHE) implementing the full set of classical reversible functions must be highly inefficient. While our scheme incurs exponential overhead, any such QECC implementing Toffoli transversally would still violate this lower bound through our scheme. © Rinton Press.
引用
收藏
页码:927 / 948
相关论文
共 50 条
  • [1] LIMITATIONS ON TRANSVERSAL COMPUTATION THROUGH QUANTUM HOMOMORPHIC ENCRYPTION
    Newman, Michael
    Shi, Yaoyun
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (11-12) : 927 - 948
  • [2] Limitations on information-theoretically-secure quantum homomorphic encryption
    Yu, Li
    Perez-Delgado, Carlos A.
    Fitzsimons, Joseph F.
    PHYSICAL REVIEW A, 2014, 90 (05)
  • [3] A quantum approach to homomorphic encryption
    Tan, Si-Hui
    Kettlewell, Joshua A.
    Ouyang, Yingkai
    Chen, Lin
    Fitzsimons, Joseph F.
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Experimental quantum homomorphic encryption
    Jonas Zeuner
    Ioannis Pitsios
    Si-Hui Tan
    Aditya N. Sharma
    Joseph F. Fitzsimons
    Roberto Osellame
    Philip Walther
    npj Quantum Information, 7
  • [5] Experimental quantum homomorphic encryption
    Zeuner, Jonas
    Pitsios, Ioannis
    Tan, Si-Hui
    Sharma, Aditya N.
    Fitzsimons, Joseph F.
    Osellame, Roberto
    Walther, Philip
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [6] A quantum approach to homomorphic encryption
    Si-Hui Tan
    Joshua A. Kettlewell
    Yingkai Ouyang
    Lin Chen
    Joseph F. Fitzsimons
    Scientific Reports, 6
  • [7] Multiparty computation from threshold homomorphic encryption
    Cramer, R
    Damgard, I
    Nielsen, JB
    ADVANCES IN CRYPTOLOGY-EUROCRYPT 2001, PROCEEDINGS, 2001, 2045 : 280 - 300
  • [8] Secure Sum Computation Using Homomorphic Encryption
    Sheikh, Rashid
    Mishra, Durgesh Kumar
    DATA SCIENCE AND BIG DATA ANALYTICS, 2019, 16 : 357 - 363
  • [9] Semi-homomorphic Encryption and Multiparty Computation
    Bendlin, Rikke
    Damgard, Ivan
    Orlandi, Claudio
    Zakarias, Sarah
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2011, 2011, 6632 : 169 - +
  • [10] Multiparty Computation from Somewhat Homomorphic Encryption
    Damgard, Ivan
    Pastro, Valerio
    Smart, Nigel
    Zakarias, Sarah
    ADVANCES IN CRYPTOLOGY - CRYPTO 2012, 2012, 7417 : 643 - 662