Balanced Neighborhood Classifiers for Imbalanced Data Sets

被引:0
|
作者
Zhu, Shunzhi [1 ]
Ma, Ying [1 ]
Pan, Weiwei [1 ]
Zhu, Xiatian [2 ]
Luo, Guangchun [3 ]
机构
[1] Xiamen Univ Technol, Xiamen, Peoples R China
[2] Queen Mary Univ London, London E1 4NS, England
[3] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
machine learning; class imbalance; class distribution; classification; ALGORITHMS;
D O I
10.1587/transinf.2014EDL8064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Balanced Neighborhood Classifier (BNEC) is proposed for class imbalanced data. This method is not only well positioned to capture the class distribution information, but also has the good merits of high-fitting-performance and simplicity. Experiments on both synthetic and real data sets show its effectiveness.
引用
收藏
页码:3226 / 3229
页数:4
相关论文
共 50 条
  • [41] Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
    Brygala, Magdalena
    RISKS, 2022, 10 (02)
  • [42] Large margin classifiers to generate synthetic data for imbalanced datasets
    Ladeira Marques, Marcelo
    Moraes Villela, Saulo
    Hasenclever Borges, Carlos Cristiano
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3678 - 3694
  • [43] Random Balance: Ensembles of variable priors classifiers for imbalanced data
    Diez-Pastor, Jose F.
    Rodriguez, Juan J.
    Garcia-Osorio, Cesar
    Kuncheva, Ludmila I.
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 96 - 111
  • [44] Class-imbalanced classifiers for high-dimensional data
    Lin, Wei-Jiun
    Chen, James J.
    BRIEFINGS IN BIOINFORMATICS, 2013, 14 (01) : 13 - 26
  • [45] Imbalanced data issues in machine learning classifiers: a case study
    Gong, Mingxing
    JOURNAL OF OPERATIONAL RISK, 2022, 17 (04): : 17 - 36
  • [46] Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams
    Korycki, Lukasz
    Cano, Alberto
    Krawczyk, Bartosz
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2334 - 2343
  • [47] Large margin classifiers to generate synthetic data for imbalanced datasets
    Marcelo Ladeira Marques
    Saulo Moraes Villela
    Carlos Cristiano Hasenclever Borges
    Applied Intelligence, 2020, 50 : 3678 - 3694
  • [48] Neighborhood classifiers
    Hu, Qinghua
    Yu, Daren
    Me, Zongxia
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) : 866 - 876
  • [49] Ensemble of Classifiers Based on Multiobjective Genetic Sampling for Imbalanced Data
    Fernandes, Everlandio R. Q.
    de Carvalho, Andre C. P. L. F.
    Yao, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1104 - 1115
  • [50] Correlations of random classifiers on large data sets
    Kurkova, Vera
    Sanguineti, Marcello
    SOFT COMPUTING, 2021, 25 (19) : 12641 - 12648