Balanced Neighborhood Classifiers for Imbalanced Data Sets

被引:0
|
作者
Zhu, Shunzhi [1 ]
Ma, Ying [1 ]
Pan, Weiwei [1 ]
Zhu, Xiatian [2 ]
Luo, Guangchun [3 ]
机构
[1] Xiamen Univ Technol, Xiamen, Peoples R China
[2] Queen Mary Univ London, London E1 4NS, England
[3] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
machine learning; class imbalance; class distribution; classification; ALGORITHMS;
D O I
10.1587/transinf.2014EDL8064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Balanced Neighborhood Classifier (BNEC) is proposed for class imbalanced data. This method is not only well positioned to capture the class distribution information, but also has the good merits of high-fitting-performance and simplicity. Experiments on both synthetic and real data sets show its effectiveness.
引用
收藏
页码:3226 / 3229
页数:4
相关论文
共 50 条
  • [31] Machine-learning classifiers for imbalanced tornado data
    Trafalis T.B.
    Adrianto I.
    Richman M.B.
    Lakshmivarahan S.
    Computational Management Science, 2014, 11 (4) : 403 - 418
  • [32] Constructing classifiers for imbalanced data using diversity optimisation
    Khorshidi, Hadi A.
    Aickelin, Uwe
    INFORMATION SCIENCES, 2021, 565 : 1 - 16
  • [33] Adaptive ensemble of classifiers with regularization for imbalanced data classification
    Wang, Chen
    Deng, Chengyuan
    Yu, Zhoulu
    Hui, Dafeng
    Gong, Xiaofeng
    Luo, Ruisen
    INFORMATION FUSION, 2021, 69 : 81 - 102
  • [34] Comparing the performance of meta-classifiers—a case study on selected imbalanced data sets relevant for prediction of liver toxicity
    Sankalp Jain
    Eleni Kotsampasakou
    Gerhard F. Ecker
    Journal of Computer-Aided Molecular Design, 2018, 32 : 583 - 590
  • [35] Comparing the performance of meta-classifiers-a case study on selected imbalanced data sets relevant for prediction of liver toxicity
    Jain, Sankalp
    Kotsampasakou, Eleni
    Ecker, Gerhard F.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (05) : 583 - 590
  • [36] An evaluation of progressive sampling for imbalanced data sets
    Ng, Willie
    Dash, Manoranjan
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 657 - +
  • [37] Classification with local clustering in imbalanced data sets
    Ji, Hua
    Zhang, Huaxiang
    ADVANCED RESEARCH ON INFORMATION SCIENCE, AUTOMATION AND MATERIAL SYSTEM, PTS 1-6, 2011, 219-220 : 151 - 155
  • [38] A Supervised Learning Approach for Imbalanced Data Sets
    Nguyen, Giang H.
    Bouzerdoum, Abdesselam
    Phung, Son L.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3759 - 3762
  • [39] On Validation Setup for Multiclass Imbalanced Data Sets
    Silva, Evandro J. R.
    Zanchettin, Cleber
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 468 - 473
  • [40] Dynamic Feature Weighting for Imbalanced Data Sets
    Dialameh, Maryam
    Jahromi, Mansoor Zolghadri
    2015 SIGNAL PROCESSING AND INTELLIGENT SYSTEMS CONFERENCE (SPIS), 2015, : 31 - 36