Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

被引:6
|
作者
Iagallo, Andrea [1 ,2 ]
Paradiso, Nicola [1 ,2 ]
Roddaro, Stefano [1 ,2 ,3 ]
Reichl, Christian [4 ]
Wegscheider, Werner [4 ]
Biasiol, Giorgio [3 ]
Sorba, Lucia [1 ,2 ]
Beltram, Fabio [1 ,2 ]
Heun, Stefan [1 ,2 ]
机构
[1] CNR, Ist Nanosci, Natl Enterprise Nanosci & Nanotechnol NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Ist Offcina Mat CNR, Lab TASC, I-34149 Trieste, Italy
[4] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
two-dimensional electron gas (2-DEG); scanning gate microscopy; 0.7; anomaly; ONE-DIMENSIONAL CONSTRICTION; GAAS/ALGAAS HETEROSTRUCTURES; BRANCHED FLOW; ELECTRON-GAS; TRANSPORT; MICROSCOPY; SCATTERING; CHANNEL; WIRES; PROBE;
D O I
10.1007/s12274-014-0576-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origin of the anomalous transport feature appearing at a conductance G approximate to 0.7 x (2e(2)/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems.
引用
收藏
页码:948 / 956
页数:9
相关论文
共 50 条
  • [41] Origin of the "0.25 anomaly" in the nonlinear conductance of a quantum point contact
    Ihnatsenka, S.
    Zozoulenko, I. V.
    PHYSICAL REVIEW B, 2009, 79 (23)
  • [42] What Is Measured in the Scanning Gate Microscopy of a Quantum Point Contact?
    Jalabert, Rodolfo A.
    Szewc, Wojciech
    Tomsovic, Steven
    Weinmann, Dietmar
    PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [43] Scanning gate microscopy investigations on an InGaAs quantum point contact
    Aoki, N
    Da Cunha, CR
    Akis, R
    Ferry, DK
    Ochiai, Y
    APPLIED PHYSICS LETTERS, 2005, 87 (22) : 1 - 3
  • [44] Thermoelectric Scanning-Gate Interferometry on a Quantum Point Contact
    Brun, B.
    Martins, F.
    Faniel, S.
    Cavanna, A.
    Ulysse, C.
    Ouerghi, A.
    Gennser, U.
    Mailly, D.
    Simon, P.
    Huant, S.
    Sanquer, M.
    Sellier, H.
    Bayot, V
    Hackens, B.
    PHYSICAL REVIEW APPLIED, 2019, 11 (03):
  • [45] Scanning gate measurements on a coupled quantum dot - Quantum point contact system
    Gildemeister, A. E.
    Ihn, T.
    Schleser, R.
    Ensslin, K.
    Driscoll, D. C.
    Gossard, A. C.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 819 - +
  • [46] Extraction of the Rashba spin-orbit coupling constant from scanning gate microscopy conductance maps for quantum point contacts
    K. Kolasiński
    H. Sellier
    B. Szafran
    Scientific Reports, 7
  • [47] Electron Phase Shift at the Zero-Bias Anomaly of Quantum Point Contacts
    Brun, B.
    Martins, F.
    Faniel, S.
    Hackens, B.
    Cavanna, A.
    Ulysse, C.
    Ouerghi, A.
    Gennser, U.
    Mailly, D.
    Simon, P.
    Huant, S.
    Bayot, V.
    Sanquer, M.
    Sellier, H.
    PHYSICAL REVIEW LETTERS, 2016, 116 (13)
  • [48] Extraction of the Rashba spin-orbit coupling constant from scanning gate microscopy conductance maps for quantum point contacts
    Kolasinski, K.
    Sellier, H.
    Szafran, B.
    SCIENTIFIC REPORTS, 2017, 7
  • [49] Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts
    Wan, J.
    Cahay, M.
    Debray, P.
    Newrock, R.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [50] QUANTUM POINT CONTACTS
    VANHOUTEN, H
    BEENAKKER, CWJ
    VANWEES, BJ
    SEMICONDUCTORS AND SEMIMETALS, VOL 35: NANOSTRUCTURED SYSTEMS, 1992, 35 : 9 - 112