Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

被引:6
|
作者
Iagallo, Andrea [1 ,2 ]
Paradiso, Nicola [1 ,2 ]
Roddaro, Stefano [1 ,2 ,3 ]
Reichl, Christian [4 ]
Wegscheider, Werner [4 ]
Biasiol, Giorgio [3 ]
Sorba, Lucia [1 ,2 ]
Beltram, Fabio [1 ,2 ]
Heun, Stefan [1 ,2 ]
机构
[1] CNR, Ist Nanosci, Natl Enterprise Nanosci & Nanotechnol NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Ist Offcina Mat CNR, Lab TASC, I-34149 Trieste, Italy
[4] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
two-dimensional electron gas (2-DEG); scanning gate microscopy; 0.7; anomaly; ONE-DIMENSIONAL CONSTRICTION; GAAS/ALGAAS HETEROSTRUCTURES; BRANCHED FLOW; ELECTRON-GAS; TRANSPORT; MICROSCOPY; SCATTERING; CHANNEL; WIRES; PROBE;
D O I
10.1007/s12274-014-0576-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origin of the anomalous transport feature appearing at a conductance G approximate to 0.7 x (2e(2)/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems.
引用
收藏
页码:948 / 956
页数:9
相关论文
共 50 条
  • [31] Functional renormalization group treatment of the 0.7 analog in quantum point contacts
    Weidinger, Lukas
    Schmauder, Christian
    Schimmel, Dennis H.
    von Delft, Jan
    PHYSICAL REVIEW B, 2018, 98 (11)
  • [32] Conductance response of graphene nanoribbons and quantum point contacts in scanning gate measurements (vol 30, 085003, 2015)
    Mrenca-Kolasinska, Alina
    Kolasinski, Krzysztof
    Szafran, Bartlomiej
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2022, 37 (04)
  • [33] Scanning gate microscopy on a graphene quantum point contact
    Neubeck, S.
    Ponomarenko, L. A.
    Mayorov, A. S.
    Morozov, S. V.
    Yang, R.
    Novoselov, K. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (06): : 1002 - 1004
  • [34] Kondo model for the "0.7 anomaly" in transport through a quantum point contact
    Meir, Y
    Hirose, K
    Wingreen, NS
    PHYSICAL REVIEW LETTERS, 2002, 89 (19) : 1 - 196802
  • [35] 0.7 Anomaly Induced by Fano Resonance in Quantum Point Contact Coupled with Quantum Dot
    Jung, Hwanchul
    Chung, Yunchul
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2023, 32 (01): : 19 - 22
  • [36] Signatures of spin-orbit coupling in scanning gate conductance images of electron flow from quantum point contacts
    Nowak, M. P.
    Kolasinski, K.
    Szafran, B.
    PHYSICAL REVIEW B, 2014, 90 (03):
  • [37] Electrostatic potential shape of gate-defined quantum point contacts
    Geier, M.
    Freudenfeld, J.
    Silva, J. T.
    Umansky, V
    Reuter, D.
    Wieck, A. D.
    Brouwer, P. W.
    Ludwig, S.
    PHYSICAL REVIEW B, 2020, 101 (16)
  • [38] Split-gate quantum point contacts with tunable channel length
    Iqbal, M. J.
    de Jong, J. P.
    Reuter, D.
    Wieck, A. D.
    van der Wal, C. H.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (02)
  • [39] ac response of quantum point contacts with a split-gate configuration
    Sasaoka, Kenji
    Yamamoto, Takahiro
    Watanabe, Satoshi
    Shiraishi, Kenji
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [40] Anti-resonance and the "0.7 anomaly" in conductance through a quantum point contact
    Xiong, Ye
    Xie, X. C.
    Xiong, Shi-Jie
    PHYSICS LETTERS A, 2011, 375 (37) : 3325 - 3328