Parallel blocked sparse matrix-vector multiplication with dynamic parameter selection method

被引:0
|
作者
Kudo, M [1 ]
Kuroda, H
Kanada, Y
机构
[1] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Tokyo, Japan
[2] Univ Tokyo, Super Comp Div, Ctr Informat Technol, Tokyo, Japan
来源
COMPUTATIONAL SICENCE - ICCS 2003, PT III, PROCEEDINGS | 2003年 / 2659卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A blocking method is a popular optimization technique for sparse matrix-vector multiplication (SpMxV). In this paper, a new blocking method which generalizes the conventional two blocking methods and its application to the parallel environment are proposed. This paper also proposes a dynamic parameter selection method for blocked parallel SpMxV which automatically selects the parameter set according to the characteristics of the target matrix and machine in order to achieve high performance on various computational environments. The performance with dynamically selected parameter set is compared with the performance with generally-used fixed parameter sets for 12 types of sparse matrices on four parallel machines: including PentiumIII, Sparc II, MIPS R12000 and Itanium. The result shows that the performance with dynamically selected parameter set is the best in most cases.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 50 条
  • [31] Semi-two-dimensional partitioning for parallel sparse matrix-vector multiplication
    Kayaaslan, Enver
    Ucar, Bora
    Aykanat, Cevdet
    2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2015, : 1125 - 1134
  • [32] Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method
    Zeiser, Andreas
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (03) : 328 - 346
  • [33] Sparse matrix-vector multiplication for Finite Element Method matrices on FPGAs
    El-Kurdi, Yousef
    Gross, Warren J.
    Giannacopoulos, Dennis
    FCCM 2006: 14TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2006, : 293 - +
  • [34] Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method
    Andreas Zeiser
    Journal of Scientific Computing, 2011, 47 : 328 - 346
  • [35] AN EFFICIENT PARALLEL ALGORITHM FOR MATRIX-VECTOR MULTIPLICATION
    HENDRICKSON, B
    LELAND, R
    PLIMPTON, S
    INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (01): : 73 - 88
  • [36] Adaptive sparse matrix representation for efficient matrix-vector multiplication
    Zardoshti, Pantea
    Khunjush, Farshad
    Sarbazi-Azad, Hamid
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (09): : 3366 - 3386
  • [37] Load-balancing in sparse matrix-vector multiplication
    Nastea, SG
    Frieder, O
    ElGhazawi, T
    EIGHTH IEEE SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1996, : 218 - 225
  • [38] Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication
    Yilmaz, Buse
    Aktemur, Baris
    Garzaran, Maria J.
    Kamin, Sam
    Kirac, Furkan
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 13 (01)
  • [39] Sparse Matrix-Vector Multiplication Based on Online Arithmetic
    Cherati, Sahar Moradi
    Jaberipur, Ghassem
    Sousa, Leonel
    IEEE ACCESS, 2024, 12 : 87653 - 87664
  • [40] Energy Evaluation of Sparse Matrix-Vector Multiplication on GPU
    Benatia, Akrem
    Ji, Weixing
    Wang, Yizhuo
    Shi, Feng
    2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,