Parallel blocked sparse matrix-vector multiplication with dynamic parameter selection method

被引:0
|
作者
Kudo, M [1 ]
Kuroda, H
Kanada, Y
机构
[1] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Tokyo, Japan
[2] Univ Tokyo, Super Comp Div, Ctr Informat Technol, Tokyo, Japan
来源
COMPUTATIONAL SICENCE - ICCS 2003, PT III, PROCEEDINGS | 2003年 / 2659卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A blocking method is a popular optimization technique for sparse matrix-vector multiplication (SpMxV). In this paper, a new blocking method which generalizes the conventional two blocking methods and its application to the parallel environment are proposed. This paper also proposes a dynamic parameter selection method for blocked parallel SpMxV which automatically selects the parameter set according to the characteristics of the target matrix and machine in order to achieve high performance on various computational environments. The performance with dynamically selected parameter set is compared with the performance with generally-used fixed parameter sets for 12 types of sparse matrices on four parallel machines: including PentiumIII, Sparc II, MIPS R12000 and Itanium. The result shows that the performance with dynamically selected parameter set is the best in most cases.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 50 条
  • [21] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [22] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [23] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [24] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +
  • [25] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [26] STRUCTURED SPARSE MATRIX-VECTOR MULTIPLICATION ON A MASPAR
    DEHN, T
    EIERMANN, M
    GIEBERMANN, K
    SPERLING, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T534 - T538
  • [27] Performance Aspects of Sparse Matrix-Vector Multiplication
    Simecek, I.
    ACTA POLYTECHNICA, 2006, 46 (03) : 3 - 8
  • [28] The study of impact of matrix-processor mapping on the parallel sparse matrix-vector multiplication
    Simecek, I.
    Langr, D.
    Srnec, E.
    2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 321 - 328
  • [29] On improving the performance of sparse matrix-vector multiplication
    White, JB
    Sadayappan, P
    FOURTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING, PROCEEDINGS, 1997, : 66 - 71
  • [30] Sparse matrix-vector multiplication -: Final solution?
    Simecek, Ivan
    Tvrdik, Pavel
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 156 - 165