Parallel blocked sparse matrix-vector multiplication with dynamic parameter selection method

被引:0
|
作者
Kudo, M [1 ]
Kuroda, H
Kanada, Y
机构
[1] Univ Tokyo, Dept Comp Sci, Grad Sch Informat Sci & Technol, Tokyo, Japan
[2] Univ Tokyo, Super Comp Div, Ctr Informat Technol, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A blocking method is a popular optimization technique for sparse matrix-vector multiplication (SpMxV). In this paper, a new blocking method which generalizes the conventional two blocking methods and its application to the parallel environment are proposed. This paper also proposes a dynamic parameter selection method for blocked parallel SpMxV which automatically selects the parameter set according to the characteristics of the target matrix and machine in order to achieve high performance on various computational environments. The performance with dynamically selected parameter set is compared with the performance with generally-used fixed parameter sets for 12 types of sparse matrices on four parallel machines: including PentiumIII, Sparc II, MIPS R12000 and Itanium. The result shows that the performance with dynamically selected parameter set is the best in most cases.
引用
收藏
页码:581 / 591
页数:11
相关论文
共 50 条
  • [1] Blocked-Based Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers
    Shahnaz, Rukhsana
    Usman, Anila
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2011, 8 (02) : 130 - 136
  • [2] Implementing Blocked Sparse Matrix-Vector Multiplication on NVIDIA GPUs
    Monakov, Alexander
    Avetisyan, Arutyun
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, PROCEEDINGS, 2009, 5657 : 289 - 297
  • [3] A Nested Dissection Partitioning Method for Parallel Sparse Matrix-Vector Multiplication
    Boman, Erik G.
    Wolf, Michael M.
    2013 IEEE CONFERENCE ON HIGH PERFORMANCE EXTREME COMPUTING (HPEC), 2013,
  • [4] Communication balancing in parallel sparse matrix-vector multiplication
    Bisseling, RH
    Meesen, W
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 21 : 47 - 65
  • [5] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [6] Merge-based Parallel Sparse Matrix-Vector Multiplication
    Merrill, Duane
    Garland, Michael
    SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2016, : 678 - 689
  • [7] Towards a fast parallel sparse symmetric matrix-vector multiplication
    Geus, R
    Röllin, S
    PARALLEL COMPUTING, 2001, 27 (07) : 883 - 896
  • [8] A New Method of Sparse Matrix-Vector Multiplication on GPU
    Huan, Gao
    Qian, Zhang
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 954 - 958
  • [9] Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse Blocks
    Buluc, Aydin
    Fineman, Jeremy T.
    Frigo, Matteo
    Gilbert, John R.
    Leiserson, Charles E.
    SPAA'09: PROCEEDINGS OF THE TWENTY-FIRST ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2009, : 233 - 244
  • [10] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):