COSIFER: a Python']Python package for the consensus inference of molecular interaction networks

被引:4
|
作者
Manica, Matteo [1 ,2 ]
Bunne, Charlotte [1 ,3 ]
Mathis, Roland [1 ]
Cadow, Joris [1 ]
Ahsen, Mehmet Eren [4 ]
Stolovitzky, Gustavo A. [4 ,5 ]
Martinez, Maria Rodriguez [1 ]
机构
[1] IBM Res Europe, Cognit Comp & Ind Solut, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Machine Learning, CH-8092 Zurich, Switzerland
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] IBM TJ Watson Res Ctr, Translat Syst Biol & Nanobiotechnol, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1093/bioinformatics/btaa942
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of high-throughput technologies has provided researchers with measurements of thousands of molecular entities and enable the investigation of the internal regulatory apparatus of the cell. However, network inference from high-throughput data is far from being a solved problem. While a plethora of different inference methods have been proposed, they often lead to non-overlapping predictions, and many of them lack user-friendly implementations to enable their broad utilization. Here, we present Consensus Interaction Network Inference Service (COSIFER), a package and a companion web-based platform to infer molecular networks from expression data using state-of-the-art consensus approaches. COSIFER includes a selection of state-of-the-art methodologies for network inference and different consensus strategies to integrate the predictions of individual methods and generate robust networks.
引用
收藏
页码:2070 / 2072
页数:3
相关论文
共 50 条
  • [41] TDCRPy: A python']python package for TDCR measurements
    Coulon, Romain
    Hu, Jialin
    APPLIED RADIATION AND ISOTOPES, 2024, 214
  • [42] scqubits: a Python']Python package for superconducting qubits
    Groszkowski, Peter
    Koch, Jens
    QUANTUM, 2021, 5
  • [43] WavePy: A Python']Python Package for Wave Optics
    Beck, Jeffrey
    Bekins, Celina
    Bos, Jeremy P.
    LONG-RANGE IMAGING, 2016, 9846
  • [44] CosmoFlow: Python']Python package for cosmological correlators
    Werth, Denis
    Pinol, Lucas
    Renaux-Petel, Sebastien
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (17)
  • [45] pyGROMODS: a Python']Python package for the generation of input files for molecular dynamic simulation with GROMACS
    Daniyan, Michael Oluwatoyin
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (14): : 7207 - 7220
  • [46] BayesPy: Variational Bayesian Inference in Python']Python
    Luttinen, Jaakko
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [47] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204
  • [48] TextCL: A Python']Python package for NLP preprocessing tasks
    Petukhova, Alina
    Fachada, Nuno
    SOFTWAREX, 2022, 19
  • [49] TreeSwift: A massively scalable Python']Python tree package
    Moshiri, N.
    SOFTWAREX, 2020, 11
  • [50] pyFUME: a Python']Python Package for Fuzzy Model Estimation
    Fuchs, Caro
    Spolaor, Simone
    Nobile, Marco S.
    Kaymak, Uzay
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,