COSIFER: a Python']Python package for the consensus inference of molecular interaction networks

被引:4
|
作者
Manica, Matteo [1 ,2 ]
Bunne, Charlotte [1 ,3 ]
Mathis, Roland [1 ]
Cadow, Joris [1 ]
Ahsen, Mehmet Eren [4 ]
Stolovitzky, Gustavo A. [4 ,5 ]
Martinez, Maria Rodriguez [1 ]
机构
[1] IBM Res Europe, Cognit Comp & Ind Solut, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Machine Learning, CH-8092 Zurich, Switzerland
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] IBM TJ Watson Res Ctr, Translat Syst Biol & Nanobiotechnol, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1093/bioinformatics/btaa942
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advent of high-throughput technologies has provided researchers with measurements of thousands of molecular entities and enable the investigation of the internal regulatory apparatus of the cell. However, network inference from high-throughput data is far from being a solved problem. While a plethora of different inference methods have been proposed, they often lead to non-overlapping predictions, and many of them lack user-friendly implementations to enable their broad utilization. Here, we present Consensus Interaction Network Inference Service (COSIFER), a package and a companion web-based platform to infer molecular networks from expression data using state-of-the-art consensus approaches. COSIFER includes a selection of state-of-the-art methodologies for network inference and different consensus strategies to integrate the predictions of individual methods and generate robust networks.
引用
收藏
页码:2070 / 2072
页数:3
相关论文
共 50 条
  • [21] BCI Toolbox: An open-source python']python package for the Bayesian causal inference model
    Zhu, Haocheng
    Beierholm, Ulrik
    Shams, Ladan
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [22] Generative Type Inference for Python']Python
    Peng, Yun
    Wang, Chaozheng
    Wang, Wenxuan
    Gao, Cuiyun
    Lyu, Michael R.
    2023 38TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE, 2023, : 988 - 999
  • [23] MDiGest: A Python']Python package for describing allostery from molecular dynamics simulations
    Maschietto, Federica
    Allen, Brandon
    Kyro, Gregory W.
    Batista, Victor S.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (21):
  • [24] PUCHIK: A Python']Python Package To Analyze Molecular Dynamics Simulations of Aspherical Nanoparticles
    Ishkhanyan, Hrachya
    Santana-Bonilla, Alejandro
    Lorenz, Christian D.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1694 - 1701
  • [25] PyUNIxMD: A Python']Python-based excited state molecular dynamics package
    Lee, In Seong
    Ha, Jong-Kwon
    Han, Daeho
    Kim, Tae In
    Moon, Sung Wook
    Min, Seung Kyu
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (24) : 1755 - 1766
  • [26] SurvLIMEpy: A Python']Python package implementing SurvLIME
    Pachon-Garcia, Cristian
    Hernandez-Perez, Carlos
    Delicado, Pedro
    Vilaplana, Veronica
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [28] A Python']Python package for particle physics analyses
    Bevan, Adrian
    Charman, Thomas
    Hays, Jonathan
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [29] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [30] danRerLib: a Python']Python package for zebrafish transcriptomics
    Schwartz, Ashley, V
    Sant, Karilyn E.
    George, Uduak Z.
    BIOINFORMATICS ADVANCES, 2024, 4 (01):