Effect of freeze-thaw damage at curing time on mechanical properties of polyurethane concrete

被引:3
|
作者
Wang, Hongyang [1 ]
Sun, Quansheng [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn, Harbin, Peoples R China
关键词
Polyurethane concrete; Freeze-thaw damage during the curing time; Re-curing conditions; Mechanical properties; Microstructure analysis;
D O I
10.1108/MMMS-06-2022-0112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose Polyurethane concrete has a high strength-to-weight ratio in the short term, and the strength-to-weight ratio stage during the maintenance period is critical. Freeze-thaw cycles have a noticeable damaging effect on the durability of polyurethane concrete. The engineering specification of polyurethane concrete with incomplete hydration reaction must be studied, as well as the development of internal structure during curing. In this paper, the polyurethane concrete tests were set up under eight distinct maintenance settings based on the climate features of the northern area and the service environment. The test results were evaluated to determine the effect of the number of early freeze-thaw cycles and the time node of early freeze-thaw cycles on the mechanical characteristics of polyurethane concrete, which revealed that the time node of freeze-thaw damage impacted the freeze-thaw resistance of polyurethane concrete susceptible to early freeze-thaw damage. Design/methodology/approach The early-age freeze-thaw damage polyurethane concrete was experimentally studied by controlling the time node of the freeze-thaw cycle and the curing environment. The test considered the time node, frequency of freeze-thaw damage of polyurethane concrete and the influence of subsequent curing environment and observed the mass change, relative dynamic elastic modulus, relative durability index, compressive strength and apparent damage of polyurethane concrete. The early mechanical properties of polyurethane concrete were studied by analyzing the change of numerical value. The microscopic mechanism of strength formation of polyurethane concrete was analyzed by XRD, FTIR and SEM image. Findings The closer the time of freeze-thaw damage was to the specimen hardening, the worse the mechanical properties and structure were, according to SEM photographs. For specimens with serial number of 12-groups, its compressive strength is only 82.39% of that of the standard group, even if the curing process continues after 20 times thawing, which increased early environment exacerbate strength loss in polyurethane concrete and also reduced freeze-thaw resistance. The findings of the tests reveal that curing can restore the freeze-thaw resistance of damaged polyurethane concrete. Curing in water has a better recovery impact than curing in air; the mechanical properties can be restored by sufficient re-curing time and good re-curing conditions. Originality/value By studying the freeze-thaw cycle test and test results of polyurethane concrete in different curing time nodes, the relationship between the mechanical properties of polyurethane concrete and the time node, number of freeze-thaw cycles, and subsequent maintenance environment was explored. Considering the special mechanism of strength formation of polyurethane concrete, the polyurethane concrete damaged by freeze-thaw has the ability to continue to form strength under subsequent maintenance. This experimental study can provide an analytical basis for the strength formation and reconditioning of polyurethane concrete structures subjected to freeze-thaw environments during the curing time under extreme natural conditions in fall and winter in actual projects.
引用
收藏
页码:772 / 792
页数:21
相关论文
共 50 条
  • [31] Study on mechanical properties and damage mechanism of recycled concrete containing silica fume in freeze-thaw environment
    Bai, Weifeng
    Song, Zhou
    Yuan, Chenyang
    Guan, Junfeng
    Xie, Chaopeng
    Huang, Hu
    Ma, Ying
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375
  • [32] A damage model of concrete under freeze-thaw cycles
    Wei Jun
    Wu Xing-hao
    Zhao Xiao-long
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (3): : 40 - 42
  • [33] Research on Basic Mechanical Properties and Fracture Damage of Coal Gangue Concrete Subjected to Freeze-Thaw Cycles
    Huang, Min
    Duan, Jingmin
    Wang, Jiakai
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [34] Evaluation of freeze-thaw damage in concrete by ultrasonic imaging
    Molero, M.
    Aparicio, S.
    Al-Assadi, G.
    Casati, M. J.
    Hernandez, M. G.
    Anaya, J. J.
    NDT & E INTERNATIONAL, 2012, 52 : 86 - 94
  • [35] Effect of repeated freeze-thaw cycles on mechanical properties of clay
    Jiang, Haiqiang
    Han, Hongwei
    Liu, Xingchao
    Wang, Enliang
    Fu, Qiang
    Luo, Jing
    HELIYON, 2024, 10 (05)
  • [36] The effect of freeze-thaw cycling on the mechanical properties of expansive soils
    Tang, Liang
    Cong, Shengyi
    Geng, Lin
    Ling, Xianzhang
    Gan, Fada
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2018, 145 : 197 - 207
  • [37] The effect of freeze-thaw process on the physical and mechanical properties of tuff
    Ghobadi, M. H.
    Beydokhti, A. R. Taleb
    Nikudel, M. R.
    Asiabanha, A.
    Karakus, M.
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (09)
  • [38] Effect of freeze-thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete
    Dong, Fangyuan
    Wang, Hanpeng
    Yu, Jiangtao
    Liu, Keke
    Guo, Zhenwen
    Duan, Xinzhi
    Qiong, Xing
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 295
  • [39] Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete
    Shang, Huai-shuai
    Cao, Wei-qun
    Wang, Bin
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [40] Effect of preconditioning on the freeze-thaw resistance of concrete
    Haynack, Alexander
    Timothy, Jithender
    Kraenkel, Thomas
    Gehlen, Christoph
    BETON- UND STAHLBETONBAU, 2022, 117 (12) : 985 - 997