Effect of freeze-thaw damage at curing time on mechanical properties of polyurethane concrete

被引:3
|
作者
Wang, Hongyang [1 ]
Sun, Quansheng [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn, Harbin, Peoples R China
关键词
Polyurethane concrete; Freeze-thaw damage during the curing time; Re-curing conditions; Mechanical properties; Microstructure analysis;
D O I
10.1108/MMMS-06-2022-0112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose Polyurethane concrete has a high strength-to-weight ratio in the short term, and the strength-to-weight ratio stage during the maintenance period is critical. Freeze-thaw cycles have a noticeable damaging effect on the durability of polyurethane concrete. The engineering specification of polyurethane concrete with incomplete hydration reaction must be studied, as well as the development of internal structure during curing. In this paper, the polyurethane concrete tests were set up under eight distinct maintenance settings based on the climate features of the northern area and the service environment. The test results were evaluated to determine the effect of the number of early freeze-thaw cycles and the time node of early freeze-thaw cycles on the mechanical characteristics of polyurethane concrete, which revealed that the time node of freeze-thaw damage impacted the freeze-thaw resistance of polyurethane concrete susceptible to early freeze-thaw damage. Design/methodology/approach The early-age freeze-thaw damage polyurethane concrete was experimentally studied by controlling the time node of the freeze-thaw cycle and the curing environment. The test considered the time node, frequency of freeze-thaw damage of polyurethane concrete and the influence of subsequent curing environment and observed the mass change, relative dynamic elastic modulus, relative durability index, compressive strength and apparent damage of polyurethane concrete. The early mechanical properties of polyurethane concrete were studied by analyzing the change of numerical value. The microscopic mechanism of strength formation of polyurethane concrete was analyzed by XRD, FTIR and SEM image. Findings The closer the time of freeze-thaw damage was to the specimen hardening, the worse the mechanical properties and structure were, according to SEM photographs. For specimens with serial number of 12-groups, its compressive strength is only 82.39% of that of the standard group, even if the curing process continues after 20 times thawing, which increased early environment exacerbate strength loss in polyurethane concrete and also reduced freeze-thaw resistance. The findings of the tests reveal that curing can restore the freeze-thaw resistance of damaged polyurethane concrete. Curing in water has a better recovery impact than curing in air; the mechanical properties can be restored by sufficient re-curing time and good re-curing conditions. Originality/value By studying the freeze-thaw cycle test and test results of polyurethane concrete in different curing time nodes, the relationship between the mechanical properties of polyurethane concrete and the time node, number of freeze-thaw cycles, and subsequent maintenance environment was explored. Considering the special mechanism of strength formation of polyurethane concrete, the polyurethane concrete damaged by freeze-thaw has the ability to continue to form strength under subsequent maintenance. This experimental study can provide an analytical basis for the strength formation and reconditioning of polyurethane concrete structures subjected to freeze-thaw environments during the curing time under extreme natural conditions in fall and winter in actual projects.
引用
收藏
页码:772 / 792
页数:21
相关论文
共 50 条
  • [21] Experimental studies on mechanical properties of concrete under freeze-thaw action
    Zou, Chao-Ying
    Zhao, Juan
    Luo, Jian-Lin
    Xu, Tian-Shui
    Liang, Feng
    ADVANCES IN STRUCTURAL ENGINEERING:THEORY AND APPLICATIONS VOLS 1 AND 2, 2006, : 1759 - 1764
  • [22] Mechanical Properties of Ballastless Track Considering Freeze-Thaw Deterioration Damage
    Xie, Haoran
    Xu, Lingyan
    Yan, Bin
    MATHEMATICS, 2023, 11 (10)
  • [23] Advances in damage of concrete due to freeze-thaw circles
    Fan, Caixia
    Tian, Hao
    SUSTAINABLE DEVELOPMENT OF URBAN AND RURAL AREAS, 2014, 507 : 204 - +
  • [24] Damage mechanical properties of sandstone under different freeze-thaw conditions
    Li, Yong
    Gui, Huigao
    Chen, Jie
    Hu, Shuangjie
    Sun, Chuanmeng
    Caikuang yu Anquan Gongcheng Xuebao/Journal of Mining and Safety Engineering, 2024, 41 (04): : 813 - 823
  • [25] Dynamic mechanical properties of concrete with freeze-thaw damage under different low-temperature conditions
    Gan, Lei
    Liu, Yuan
    Zhang, Zongliang
    Liu, Jun
    Jin, Hongjie
    Sun, Yiqing
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [26] Study on mechanical properties and damage mechanism of recycled concrete containing silica fume in freeze-thaw environment
    Summa, Paulina
    Da Costa, Katarzyna Swirk
    Gopakumar, Jithin
    Samojeden, Bogdan
    Motak, Monika
    Running, Magnus
    Van Beek, Wouter
    Da Costa, Patrick
    APPLIED MATERIALS TODAY, 2023, 32
  • [27] A Damage Model of Concrete under Freeze-Thaw Cycles
    卫军
    JournalofWuhanUniversityofTechnology-MaterialsScience, 2003, (03) : 40 - 42
  • [28] Peridynamic modeling of freeze-thaw damage in concrete structures
    Wu, Pan
    Liu, Yunpeng
    Peng, Xuhao
    Chen, Ziguang
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (14) : 2826 - 2837
  • [29] A damage model of concrete under freeze-thaw cycles
    Wei, J
    Wu, XH
    Zhao, XL
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2003, 18 (03): : 40 - 42
  • [30] Analysis of Freeze-Thaw Damage of Lightweight Aggregate Concrete
    Mao, Jize
    Ayuta, Koichi
    Qi, Hui
    Liu, Zongmin
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VIII, 2010, 417-418 : 829 - +