Combining ab initio and machine learning method to improve prediction performance of diatomic vibrational energies

被引:4
|
作者
Fu, Jia [1 ]
Wan, Zhitao [1 ]
Yang, Zhangzhang [1 ]
Liu, Li [1 ]
Fan, Qunchao [1 ]
Xie, Feng [2 ]
Zhang, Yi [3 ]
Ma, Jie [4 ]
机构
[1] Xihua Univ, Coll Sci, Key Lab High Performance Sci Computat, Chengdu 610039, Peoples R China
[2] Tsinghua Univ, Minist Educ, Inst Nucl & New Energy Technol,Key Lab Adv Reacto, Collaborat Innovat Ctr Adv Nucl Energy Technol, Beijing, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha, Peoples R China
[4] Shanxi Univ, Coll Phys & Elect Engn, State Key Lab Quantum Opt & Quantum Opt Devices, Laser Spect Lab, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ab initio; diatomic system; machine learning; vibrational levels; vibrational spectra; BORN-OPPENHEIMER BREAKDOWN; GROUND-STATE; DISSOCIATION-ENERGY; EXCITED-STATES; CURVES; POTENTIALS; MOLECULES; HYDRIDES;
D O I
10.1002/qua.26953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Through the comprehensive analysis of ab initio and experimental results of a large number of diatomic systems, the systematic deviation of ab initio method in vibrational energies prediction caused by physical/mathematical simplification is located. A joint ab initio and machine learning method based on information across molecules is proposed to deal with the problem. Starting from an ab initio model, and then systematically modifying it through machine learning, the vibrational energies prediction of many diatomic systems (SiC, HBr, NO, PC, N-2, SiO, O-2, ClF, etc.) have been improved, and significantly surpassed the more complex ab initio model. In addition to the improvement of accuracy, the new method also greatly reduces the computational expense, and is applicable for the systems without experimental data.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Ab initio group contribution method for activation energies for radical additions
    Saeys, M
    Reyniers, MF
    Marin, GB
    Van Speybroeck, V
    Waroquier, M
    AICHE JOURNAL, 2004, 50 (02) : 426 - 444
  • [32] Combination of ab initio descriptors and machine learning approach for the prediction of the plasticity mechanisms in β-metastable Ti alloys
    Coffigniez, M.
    De Breuck, P. -P.
    Choisez, L.
    Marteleur, M.
    van Setten, M. J.
    Petretto, G.
    Rignanese, G. -M.
    Jacques, P. J.
    MATERIALS & DESIGN, 2024, 239
  • [33] Machine learning techniques for the ab initio Bravais lattice determination
    Silva-Ramirez, Esther-Lydia
    Cumbrera-Conde, Inmaculada
    Cano-Crespo, Rafael
    Cumbrera, Francisco-Luis
    EXPERT SYSTEMS, 2023, 40 (02)
  • [34] Machine learning potential for Ab Initio phase transitions of zirconia
    Yuanpeng Deng
    Chong Wang
    Xiang Xu
    Hui Li
    Theoretical & Applied Mechanics Letters, 2023, 13 (06) : 408 - 414
  • [35] Ab initio prediction of vibrational states of the HeCuF helium-containing complex
    Tanaka, Tomokazu
    Takayanagi, Toshiyuki
    Taketsugu, Tetsuya
    Ono, Yuriko
    CHEMICAL PHYSICS LETTERS, 2012, 539 : 15 - 18
  • [36] Machine learning for analysing ab initio molecular dynamics simulations
    Hase, Florian
    Galvan, Ignacio Fdez
    Aspuru-Guzik, Alan
    Lindh, Roland
    Vacher, Morgane
    31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [37] Ab initio machine learning for accelerating catalytic materials discovery
    Huang Y.
    Xin H.
    Catalysis, 2021, 33 : 347 - 379
  • [38] Machine learning potential for Ab Initio phase transitions of zirconia
    Deng, Yuanpeng
    Wang, Chong
    Xu, Xiang
    Li, Hui
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (06)
  • [39] AB-INITIO PREDICTION OF THE VIBRATIONAL FREQUENCIES OF N2S
    WONG, AT
    BACSKAY, GB
    CHEMICAL PHYSICS LETTERS, 1994, 217 (1-2) : 17 - 23
  • [40] Precise ab-initio prediction of terahertz vibrational modes in crystalline systems
    Jepsen, Peter Uhd
    Clark, Stewart J.
    CHEMICAL PHYSICS LETTERS, 2007, 442 (4-6) : 275 - 280