Combining ab initio and machine learning method to improve prediction performance of diatomic vibrational energies

被引:4
|
作者
Fu, Jia [1 ]
Wan, Zhitao [1 ]
Yang, Zhangzhang [1 ]
Liu, Li [1 ]
Fan, Qunchao [1 ]
Xie, Feng [2 ]
Zhang, Yi [3 ]
Ma, Jie [4 ]
机构
[1] Xihua Univ, Coll Sci, Key Lab High Performance Sci Computat, Chengdu 610039, Peoples R China
[2] Tsinghua Univ, Minist Educ, Inst Nucl & New Energy Technol,Key Lab Adv Reacto, Collaborat Innovat Ctr Adv Nucl Energy Technol, Beijing, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha, Peoples R China
[4] Shanxi Univ, Coll Phys & Elect Engn, State Key Lab Quantum Opt & Quantum Opt Devices, Laser Spect Lab, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ab initio; diatomic system; machine learning; vibrational levels; vibrational spectra; BORN-OPPENHEIMER BREAKDOWN; GROUND-STATE; DISSOCIATION-ENERGY; EXCITED-STATES; CURVES; POTENTIALS; MOLECULES; HYDRIDES;
D O I
10.1002/qua.26953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Through the comprehensive analysis of ab initio and experimental results of a large number of diatomic systems, the systematic deviation of ab initio method in vibrational energies prediction caused by physical/mathematical simplification is located. A joint ab initio and machine learning method based on information across molecules is proposed to deal with the problem. Starting from an ab initio model, and then systematically modifying it through machine learning, the vibrational energies prediction of many diatomic systems (SiC, HBr, NO, PC, N-2, SiO, O-2, ClF, etc.) have been improved, and significantly surpassed the more complex ab initio model. In addition to the improvement of accuracy, the new method also greatly reduces the computational expense, and is applicable for the systems without experimental data.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Ab Initio Machine Learning in Chemical Compound Space
    Huang, Bing
    von Lilienfeld, O. Anatole
    CHEMICAL REVIEWS, 2021, 121 (16) : 10001 - 10036
  • [22] Ab initio machine learning of phase space averages
    Weinreich, Jan
    Lemm, Dominik
    von Rudorff, Guido Falk
    von Lilienfeld, O. Anatole
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (02):
  • [23] AN AB-INITIO CALCULATION OF THE LOW-FREQUENCY VIBRATIONAL ENERGIES OF THE HCL DIMER
    GOMEZ, PC
    BUNKER, PR
    KARPFEN, A
    LISCHKA, H
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1994, 166 (02) : 441 - 448
  • [24] AB-INITIO CALCULATED ENERGIES AND VIBRATIONAL FREQUENCIES OF 3-AZIDOPROPENE (ALLYLAZIDE)
    GATIAL, A
    BISKUPIC, S
    KLAEBOE, P
    NIELSEN, CJ
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1995, 191 : 145 - 157
  • [25] Ab initio studies of the homodimers of methane and silane - Geometries, interaction energies and vibrational spectra
    Ford, Thomas A.
    JOURNAL OF MOLECULAR STRUCTURE, 2011, 993 (1-3) : 443 - 447
  • [26] Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems
    Ohta, Y
    Ohta, K
    Kinugawa, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01): : 312 - 320
  • [27] Combining Machine Learning Approaches and Accurate Ab Initio Enhanced Sampling Methods for Prebiotic Chemical Reactions in Solution
    Devergne, Timothee
    Magrino, Theo
    Pietrucci, Fabio
    Saitta, A. Marco
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (09) : 5410 - 5421
  • [28] Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning
    Gan, Yu
    Wang, Guanjie
    Zhou, Jian
    Sun, Zhimei
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [29] Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning
    Yu Gan
    Guanjie Wang
    Jian Zhou
    Zhimei Sun
    npj Computational Materials, 7
  • [30] A scalable method for ab initio computation of free energies in nanoscale systems
    Eisenbach, M.
    Zhou, C. -G.
    Nicholson, D. M.
    Brown, G.
    Larkin, J.
    Schulthess, T. C.
    PROCEEDINGS OF THE CONFERENCE ON HIGH PERFORMANCE COMPUTING NETWORKING, STORAGE AND ANALYSIS, 2009,