Combining ab initio and machine learning method to improve prediction performance of diatomic vibrational energies

被引:4
|
作者
Fu, Jia [1 ]
Wan, Zhitao [1 ]
Yang, Zhangzhang [1 ]
Liu, Li [1 ]
Fan, Qunchao [1 ]
Xie, Feng [2 ]
Zhang, Yi [3 ]
Ma, Jie [4 ]
机构
[1] Xihua Univ, Coll Sci, Key Lab High Performance Sci Computat, Chengdu 610039, Peoples R China
[2] Tsinghua Univ, Minist Educ, Inst Nucl & New Energy Technol,Key Lab Adv Reacto, Collaborat Innovat Ctr Adv Nucl Energy Technol, Beijing, Peoples R China
[3] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha, Peoples R China
[4] Shanxi Univ, Coll Phys & Elect Engn, State Key Lab Quantum Opt & Quantum Opt Devices, Laser Spect Lab, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ab initio; diatomic system; machine learning; vibrational levels; vibrational spectra; BORN-OPPENHEIMER BREAKDOWN; GROUND-STATE; DISSOCIATION-ENERGY; EXCITED-STATES; CURVES; POTENTIALS; MOLECULES; HYDRIDES;
D O I
10.1002/qua.26953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Through the comprehensive analysis of ab initio and experimental results of a large number of diatomic systems, the systematic deviation of ab initio method in vibrational energies prediction caused by physical/mathematical simplification is located. A joint ab initio and machine learning method based on information across molecules is proposed to deal with the problem. Starting from an ab initio model, and then systematically modifying it through machine learning, the vibrational energies prediction of many diatomic systems (SiC, HBr, NO, PC, N-2, SiO, O-2, ClF, etc.) have been improved, and significantly surpassed the more complex ab initio model. In addition to the improvement of accuracy, the new method also greatly reduces the computational expense, and is applicable for the systems without experimental data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl
    Yang, Zhang-Zhang
    Liu, Li
    Wan, Zhi-Tao
    Fu, Jia
    Fan, Qun-Chao
    Xie, Feng
    Zhang, Yi
    Ma, Jie
    ACTA PHYSICA SINICA, 2023, 72 (07)
  • [2] Machine learning for the prediction of converged energies from ab initio nuclear structure calculations
    Knoell, Marco
    Wolfgruber, Tobias
    Agel, Marc L.
    Wenz, Cedric
    Roth, Robert
    PHYSICS LETTERS B, 2023, 839
  • [3] Accelerating the prediction of stacking fault energy by combining ab initio calculations and machine learning
    Linda, Albert
    Akhtar, Faiz
    Pathak, Shaswat
    Bhowmick, Somnath
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [4] Achieving vibrational energies of diatomic systems with high quality by machine learning improved DFT method
    Yang, Zhangzhang
    Wan, Zhitao
    Liu, Li
    Fu, Jia
    Fan, Qunchao
    Xie, Feng
    Zhang, Yi
    Ma, Jie
    RSC ADVANCES, 2022, 12 (55) : 35950 - 35958
  • [5] Accurate ab initio vibrational energies of methyl chloride
    Owens, Alec
    Yurchenko, Sergei N.
    Yachmenev, Andrey
    Tennyson, Jonathan
    Thiel, Walter
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (24): : 244306
  • [6] Machine learning approach for ab initio prediction of microRNA precursors
    Jiang, Peng
    Wang, Wenkai
    Sang, Fei
    Tong, Jing
    Lu, Zuhong
    PROGRESS ON POST-GENOME TECHNOLOGIES, 2007, : 190 - 193
  • [7] An ab initio calculation of the vibrational energies and transition moments of HSOH
    Yurchenko, Sergei N.
    Yachmenev, Andrey
    Thiel, Walter
    Baum, Oliver
    Giesen, Thomas F.
    Melnikov, Vladlen V.
    Jensen, Per
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2009, 257 (01) : 57 - 65
  • [8] Electron-vibrational renormalization in fullerenes through ab initio and machine learning methods
    Garcia-Risueno, Pablo
    Armengol, Eva
    Garcia-Cerdana, Angel
    Garcia-Lastra, Juan Maria
    Carrasco-Busturia, David
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (30) : 20310 - 20324
  • [9] Ab initio prediction of threshold displacement energies in ZrC
    Zheng, Ming-Jie
    Szlufarska, Izabela
    Morgan, Dane
    JOURNAL OF NUCLEAR MATERIALS, 2016, 471 : 214 - 219
  • [10] Prediction of threshold displacement energies in TiC by ab initio molecular dynamics simulation method
    Rahman, M. M.
    Ain-ul Huda, Ain-ul
    Amin, Muhammad Ruhul
    Alam, F.
    Yamamoto, T.
    Ahmed, A. Z. Ziauddin
    Matsumura, S.
    Costantini, J. M.
    Yasuda, K.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (04)