A salient object detection algorithm based on RGB-D images

被引:1
|
作者
Song, Can [1 ]
Wu, Jin [1 ]
Deng, Huiping [1 ]
Zhu, Lei [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Informat Sci & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
salient objects detection; deep learning; convolutional neural network; RGB-D image;
D O I
10.1109/CAC51589.2020.9327554
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problem lack of RGB-D dataset for training, a salient object detection algorithm by cross dataset training only using RGB dataset is proposed. First, a simple convolutional neural network is designed to prediction foreground and background trained on RGB dataset MSRA10k. Then, the SLIC superpixel segmentation method is used to fuse the depth image information and cluster pixels, which can segment the edge of salient object more accurately. Finally, based on the global distribution characteristics of salient objects, superpixels are labeled using kernel probability density estimation. In order to verify the effectiveness, the proposed algorithm is compared with three newer algorithms, which has achieved better detection results in terms of PR curve, AUC and F-Measure. Experimental results show that the proposed method can improve the salient object detection of RGB-D image in the absence of RGB-D images for training.
引用
收藏
页码:1692 / 1697
页数:6
相关论文
共 50 条
  • [41] TANet: Transformer-based asymmetric network for RGB-D salient object detection
    Liu, Chang
    Yang, Gang
    Wang, Shuo
    Wang, Hangxu
    Zhang, Yunhua
    Wang, Yutao
    IET COMPUTER VISION, 2023, 17 (04) : 415 - 430
  • [42] CNN-Based RGB-D Salient Object Detection: Learn, Select, and Fuse
    Chen, Hao
    Li, Youfu
    Deng, Yongjian
    Lin, Guosheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2076 - 2096
  • [43] DMNet: Dynamic Memory Network for RGB-D Salient Object Detection
    Du, Haishun
    Zhang, Zhen
    Zhang, Minghao
    Qiao, Kangyi
    DIGITAL SIGNAL PROCESSING, 2023, 142
  • [44] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542
  • [45] HOSO: Histogram Of Surface Orientation for RGB-D Salient Object Detection
    Feng, David
    Barnes, Nick
    You, Shaodi
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 291 - 298
  • [46] An adaptive guidance fusion network for RGB-D salient object detection
    Sun, Haodong
    Wang, Yu
    Ma, Xinpeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1683 - 1693
  • [47] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876
  • [48] SALIENT OBJECT DETECTION FOR RGB-D IMAGE VIA SALIENCY EVOLUTION
    Guo, Jingfan
    Ren, Tongwei
    Bei, Jia
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [49] MULTI-MODAL TRANSFORMER FOR RGB-D SALIENT OBJECT DETECTION
    Song, Peipei
    Zhang, Jing
    Koniusz, Piotr
    Barnes, Nick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2466 - 2470
  • [50] CNN-Based RGB-D Salient Object Detection: Learn, Select, and Fuse
    Hao Chen
    Youfu Li
    Yongjian Deng
    Guosheng Lin
    International Journal of Computer Vision, 2021, 129 : 2076 - 2096