A salient object detection algorithm based on RGB-D images

被引:1
|
作者
Song, Can [1 ]
Wu, Jin [1 ]
Deng, Huiping [1 ]
Zhu, Lei [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Informat Sci & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
salient objects detection; deep learning; convolutional neural network; RGB-D image;
D O I
10.1109/CAC51589.2020.9327554
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problem lack of RGB-D dataset for training, a salient object detection algorithm by cross dataset training only using RGB dataset is proposed. First, a simple convolutional neural network is designed to prediction foreground and background trained on RGB dataset MSRA10k. Then, the SLIC superpixel segmentation method is used to fuse the depth image information and cluster pixels, which can segment the edge of salient object more accurately. Finally, based on the global distribution characteristics of salient objects, superpixels are labeled using kernel probability density estimation. In order to verify the effectiveness, the proposed algorithm is compared with three newer algorithms, which has achieved better detection results in terms of PR curve, AUC and F-Measure. Experimental results show that the proposed method can improve the salient object detection of RGB-D image in the absence of RGB-D images for training.
引用
收藏
页码:1692 / 1697
页数:6
相关论文
共 50 条
  • [21] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [22] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [23] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [24] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [25] RGB-D Salient Object Detection With Ubiquitous Target Awareness
    Zhao, Yifan
    Zhao, Jiawei
    Li, Jia
    Chen, Xiaowu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7717 - 7731
  • [26] MobileSal: Extremely Efficient RGB-D Salient Object Detection
    Wu, Yu-Huan
    Liu, Yun
    Xu, Jun
    Bian, Jia-Wang
    Gu, Yu-Chao
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10261 - 10269
  • [27] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [28] ICNet: Information Conversion Network for RGB-D Based Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 4873 - 4884
  • [29] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [30] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150