Convolutional Neural Network Based on Crossbar Arrays of (Co-Fe-B)x(LiNbO3)100-x Nanocomposite Memristors

被引:15
|
作者
Matsukatova, Anna N. [1 ,2 ]
Iliasov, Aleksandr I. [1 ,2 ]
Nikiruy, Kristina E. [1 ]
Kukueva, Elena, V [1 ]
Vasiliev, Aleksandr L. [1 ]
Goncharov, Boris, V [1 ]
Sitnikov, Aleksandr, V [1 ,3 ]
Zanaveskin, Maxim L. [1 ]
Bugaev, Aleksandr S. [4 ]
Demin, Vyacheslav A. [1 ]
Rylkov, Vladimir V. [1 ,5 ]
Emelyanov, Andrey, V [1 ,4 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[2] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[3] Voronezh State Tech Univ, Fac Radio Engn & Elect, Dept Solid State Phys, Voronezh 394026, Russia
[4] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[5] RAS, Kotelnikov Inst Radio Engn & Elect, Fryazino 141190, Russia
基金
俄罗斯科学基金会;
关键词
memristor; resistive switching; nanocomposite; neuromorphic computing; convolutional neural network; MEMORY;
D O I
10.3390/nano12193455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization. Here, we propose a hybrid CNN, consisting of a hardware fixed pre-trained and explainable feature extractor and a trainable software classifier. The hardware part was realized on passive crossbar arrays of memristors based on nanocomposite (Co-Fe-B)(x)(LiNbO3)(100-x) structures. The constructed 2-kernel CNN was able to classify the binarized Fashion-MNIST dataset with similar to 84% accuracy. The performance of the hybrid CNN is comparable to the other reported memristor-based systems, while the number of trainable parameters for the hybrid CNN is substantially lower. Moreover, the hybrid CNN is robust to the variations in the memristive characteristics: dispersion of 20% leads to only a 3% accuracy decrease. The obtained results pave the way for the efficient and reliable realization of neural networks based on partially unreliable analog elements.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Formation of (Co40Fe40B20)x(LiNbO3)100-xComposite Film on a Metallic Substrate
    Sitnikov, A. V.
    Babkina, I. V.
    Kalinin, Yu. E.
    Nikonov, A. E.
    Kopytin, M. N.
    Shakurov, A. R.
    Remizova, O. I.
    Yanchenko, L. I.
    TECHNICAL PHYSICS, 2024, 69 (02) : 399 - 403
  • [32] The Properties of Memristive Structures Based on (Co40Fe40B20)x(LiNbO3)100 –x Nanocomposites Synthesized on SiO2/Si Substrates
    S. N. Nikolaev
    A. V. Emelyanov
    R. G. Chumakov
    V. V. Rylkov
    A. V. Sitnikov
    M. Yu. Presnyakov
    E. V. Kukueva
    V. A. Demin
    Technical Physics, 2020, 65 : 243 - 249
  • [33] Effect of CoFe and Co‒Fe‒B Metal Nanogranules in Composite Memristors Based on the LiNbO3 Matrix on Its Structural Features
    K. Yu. Chernoglazov
    E. V. Khramov
    A. V. Sitnikov
    V. A. Demin
    V. V. Rylkov
    M. V. Kovalchuk
    Crystallography Reports, 2024, 69 (Suppl 1) : S17 - S22
  • [34] Magneto-Optical Spectroscopy of Nanocomposites (CoFeB)x(LiNbO3)100-x with Concentrations up to the Percolation Threshold: From Superparamagnetism and Superferromagnetism to Ferromagnetism
    Gan'shina, E. A.
    Pripechenkov, I. M.
    Perova, N. N.
    Kanazakova, E. S.
    Nikolaev, S. N.
    Sitnikov, A. S.
    Granovskii, A. B.
    Ryl'kov, V. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2023, 124 (02): : 126 - 132
  • [35] Anomalous Hall effect in (Co41Fe39B20) x (Al-O)100-x nanocomposites
    Mikhailovsky, Yu. O.
    Mettus, D. E.
    Kazakov, A. P.
    Prudnikov, V. N.
    Kalinin, Yu. E.
    Sitnikov, A. S.
    Gerber, A.
    Bartov, D.
    Granovsky, A. B.
    JETP LETTERS, 2013, 97 (08) : 473 - 477
  • [36] AC/DC conductance in granular nanocomposite films (Fe45Co45Zr10)x(CaF2)100-x
    Koltunowicz, T. N.
    Zukowski, P.
    Milosavljevic, M.
    Saad, A. M.
    Kasiuk, J. V.
    Fedotova, J. A.
    Kalinin, Yu E.
    Sitnikov, A. V.
    Fedotov, A. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 586 : S353 - S356
  • [37] Hardware Implementation of Edge Neural Network Computing for Sensor With Memristors Based on Single-Crystalline LiNbO3 Thin Film
    Pan, Xinqiang
    Luo, Wen
    Shuai, Yao
    Hu, Shaogang
    Luo, Wenbo
    Qiao, Guanchao
    Zhou, Tong
    Wang, Jiejun
    Xie, Qin
    Huang, Shitian
    Liu, Yang
    Wu, Chuangui
    Zhang, Wanli
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8526 - 8534
  • [38] Dynamic magnetic permeability of the heterogeneous nanosystems based on (Co41Fe39B20) x (SiO2)100-x composites
    Granovskii, A. B.
    Kalinin, Yu. E.
    Kashirin, M. A.
    Kolmakov, D. V.
    Ryl'kov, V. V.
    Sitnikov, A. V.
    Vyzulin, S. A.
    Gan'shina, E. A.
    Taldenkov, A. N.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2017, 125 (02) : 310 - 316
  • [39] Magnetoresistance of (Co40Fe40B20)x(SiO2)100-x and (Co84Nb14Ta2)x(Al2O3)100-x nanocomposites below the percolation threshold in pulsed magnetic fields
    Blinov, M., I
    Shakhov, M. A.
    Rylkov, V. V.
    Lahderanta, E.
    Prudnikov, V. N.
    Nikolaev, S. N.
    Sitnikov, A., V
    Granovsky, A. B.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 469 : 155 - 160
  • [40] Magneto-optical properties of nanocomposites (Co41Fe39B20)x(SiO2)100-x
    Lysiuk, V. O.
    Rozouvan, S. G.
    Staschuk, V. S.
    Stukalenko, V. V.
    SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2020, 23 (02) : 180 - 185