Convolutional Neural Network Based on Crossbar Arrays of (Co-Fe-B)x(LiNbO3)100-x Nanocomposite Memristors

被引:15
|
作者
Matsukatova, Anna N. [1 ,2 ]
Iliasov, Aleksandr I. [1 ,2 ]
Nikiruy, Kristina E. [1 ]
Kukueva, Elena, V [1 ]
Vasiliev, Aleksandr L. [1 ]
Goncharov, Boris, V [1 ]
Sitnikov, Aleksandr, V [1 ,3 ]
Zanaveskin, Maxim L. [1 ]
Bugaev, Aleksandr S. [4 ]
Demin, Vyacheslav A. [1 ]
Rylkov, Vladimir V. [1 ,5 ]
Emelyanov, Andrey, V [1 ,4 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[2] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[3] Voronezh State Tech Univ, Fac Radio Engn & Elect, Dept Solid State Phys, Voronezh 394026, Russia
[4] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[5] RAS, Kotelnikov Inst Radio Engn & Elect, Fryazino 141190, Russia
基金
俄罗斯科学基金会;
关键词
memristor; resistive switching; nanocomposite; neuromorphic computing; convolutional neural network; MEMORY;
D O I
10.3390/nano12193455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization. Here, we propose a hybrid CNN, consisting of a hardware fixed pre-trained and explainable feature extractor and a trainable software classifier. The hardware part was realized on passive crossbar arrays of memristors based on nanocomposite (Co-Fe-B)(x)(LiNbO3)(100-x) structures. The constructed 2-kernel CNN was able to classify the binarized Fashion-MNIST dataset with similar to 84% accuracy. The performance of the hybrid CNN is comparable to the other reported memristor-based systems, while the number of trainable parameters for the hybrid CNN is substantially lower. Moreover, the hybrid CNN is robust to the variations in the memristive characteristics: dispersion of 20% leads to only a 3% accuracy decrease. The obtained results pave the way for the efficient and reliable realization of neural networks based on partially unreliable analog elements.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The Properties of Memristive Structures Based on (Co40Fe40B20)x(LiNbO3)100-x Nanocomposites Synthesized on SiO2/Si Substrates
    Nikolaev, S. N.
    Emelyanov, A. V.
    Chumakov, R. G.
    Rylkov, V. V.
    Sitnikov, A. V.
    Presnyakov, M. Yu.
    Kukueva, E. V.
    Demin, V. A.
    TECHNICAL PHYSICS, 2020, 65 (02) : 243 - 249
  • [22] Properties of granular (CoFeB)x(Al2O3)100-x and (CoFeB)x(LiNbO3)100-x nanocomposites: Manifestation of superferromagnetic ordering effects
    Rylkov, V. V.
    Sitnikov, A. V.
    Nikolaev, S. N.
    Demin, V. A.
    Taldenkov, A. N.
    Presnyakov, M. Yu.
    Emelyanov, A. V.
    Vasiliev, A. L.
    Kalinin, Yu. E.
    Bugaev, A. S.
    Tugushev, V. V.
    Granovsky, A. B.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 459 : 197 - 201
  • [23] Electronic properties of thin-film nanocomposites Cox(LiNbO3)100-x
    Gridnev, S. A.
    Gorshkov, A. G.
    Kalinin, Yu. E.
    Sitnikov, A. V.
    FERROELECTRICS, 2007, 360 : 195 - 205
  • [24] Charge transfer and dielectric properties of granular nanocomposites Cox(LiNbO3)100-x
    Gridnev, S. A.
    Gorshkov, A. G.
    Sitnikov, A. V.
    Kalinin, Yu. E.
    PHYSICS OF THE SOLID STATE, 2006, 48 (06) : 1186 - 1188
  • [25] Evolution of magneto-optical properties of (Co)x (LiNbO3)100-x nanocomposites with a change in the oxygen pressure during their preparation
    Buravtsova V.E.
    Gan'shina E.A.
    Ivanova O.S.
    Kalinin Yu.E.
    Kirov S.A.
    Pkhongkhirun S.
    Sitnikov A.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2007, 71 (11) : 1539 - 1540
  • [26] Features of the Scaling of the Anomalous Hall Effect in (CoFeB)x(LiNbO3)100-x Nanocomposite Films Below the Percolation Threshold: Manifestation of the Cotunneling Hall Conductance?
    Nikolaev, S. N.
    Chernoglazov, K. Yu.
    Bugaev, A. S.
    Granovsky, A. B.
    Rylkov, V. V.
    JETP LETTERS, 2023, 118 (07) : 508 - 513
  • [27] Low-temperature internal friction in (Co45Fe45Zr10) x (Al2O3)100-x , Co x (CaF2)100-x , and Co x (PZT)100-x nanocomposites
    Tarasov, D. P.
    TECHNICAL PHYSICS, 2017, 62 (09) : 1393 - 1397
  • [28] High-temperature background of internal friction in (Co45Fe45Zr10) x (Al2O3)100-x , Co x (CaF2)100-x , and Co x (PZT)100-x nanocomposites
    Tarasov, D. P.
    TECHNICAL PHYSICS, 2013, 58 (02) : 213 - 217
  • [29] Anomalous Behavior of the Tunneling Magnetoresistance in (CoFeB)x(LiNbO3)100-x/Si Nanocomposite Film Structures Below the Percolation Threshold: Manifestations of the Cotunneling and Exchange Effects
    Nikolaev, S. N.
    Chernoglazov, K. Yu.
    Emelyanov, A. V.
    Sitnikov, A. V.
    Taldenkov, A. N.
    Patsaev, T. D.
    Vasiliev, A. L.
    Gan'shina, E. A.
    Demin, V. A.
    Averkiev, N. S.
    Granovsky, A. B.
    Rylkov, V. V.
    JETP LETTERS, 2023, 118 (01) : 58 - 66
  • [30] The Effect of Oxygen and Water Vapor on the Electric Properties of (Co40Fe40B20)x(LiNbO3)100 –x Nanogranular Composites
    A. V. Sitnikov
    I. V. Babkina
    Yu. E. Kalinin
    A. E. Nikonov
    M. N. Kopytin
    A. R. Shakurov
    V. V. Rylkov
    Technical Physics, 2021, 66 : 1284 - 1293