Convolutional Neural Network Based on Crossbar Arrays of (Co-Fe-B)x(LiNbO3)100-x Nanocomposite Memristors

被引:15
|
作者
Matsukatova, Anna N. [1 ,2 ]
Iliasov, Aleksandr I. [1 ,2 ]
Nikiruy, Kristina E. [1 ]
Kukueva, Elena, V [1 ]
Vasiliev, Aleksandr L. [1 ]
Goncharov, Boris, V [1 ]
Sitnikov, Aleksandr, V [1 ,3 ]
Zanaveskin, Maxim L. [1 ]
Bugaev, Aleksandr S. [4 ]
Demin, Vyacheslav A. [1 ]
Rylkov, Vladimir V. [1 ,5 ]
Emelyanov, Andrey, V [1 ,4 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[2] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[3] Voronezh State Tech Univ, Fac Radio Engn & Elect, Dept Solid State Phys, Voronezh 394026, Russia
[4] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[5] RAS, Kotelnikov Inst Radio Engn & Elect, Fryazino 141190, Russia
基金
俄罗斯科学基金会;
关键词
memristor; resistive switching; nanocomposite; neuromorphic computing; convolutional neural network; MEMORY;
D O I
10.3390/nano12193455
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization. Here, we propose a hybrid CNN, consisting of a hardware fixed pre-trained and explainable feature extractor and a trainable software classifier. The hardware part was realized on passive crossbar arrays of memristors based on nanocomposite (Co-Fe-B)(x)(LiNbO3)(100-x) structures. The constructed 2-kernel CNN was able to classify the binarized Fashion-MNIST dataset with similar to 84% accuracy. The performance of the hybrid CNN is comparable to the other reported memristor-based systems, while the number of trainable parameters for the hybrid CNN is substantially lower. Moreover, the hybrid CNN is robust to the variations in the memristive characteristics: dispersion of 20% leads to only a 3% accuracy decrease. The obtained results pave the way for the efficient and reliable realization of neural networks based on partially unreliable analog elements.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Adapted MLP-Mixer network based on crossbar arrays of fast and multilevel switching (Co-Fe-B)x(LiNbO3)100-x nanocomposite memristors
    Iliasov, Aleksandr I.
    Matsukatova, Anna N.
    Emelyanov, Andrey V.
    Slepov, Pavel S.
    Nikiruy, Kristina E.
    Rylkov, Vladimir V.
    NANOSCALE HORIZONS, 2024, 9 (02) : 238 - 247
  • [2] Impact of (Co-Fe-B)x(LiNbO3)100-x Nanocomposite Memristors Characteristics Dispersion on Dopamine-Like Modulation of Synaptic Plasticity
    Iliasov, A. I.
    Minnekhanov, A. A.
    Vdovichenko, A. Yu.
    Rylkov, V. V.
    Demin, V. A.
    NANOBIOTECHNOLOGY REPORTS, 2023, 18 (06) : 971 - 976
  • [3] Multifilamentary Character of Anticorrelated Capacitive and Resistive Switching in Memristive Structures Based on (Co-Fe-B)x(LiNbO3)100-x Nanocomposite
    Martyshov, M. N.
    Emelyanov, A., V
    Demin, V. A.
    Nikiruy, K. E.
    Minnekhanov, A. A.
    Nikolaev, S. N.
    Taldenkov, A. N.
    Ovcharov, A., V
    Presnyakov, M. Yu
    Sitnikov, A., V
    Vasiliev, A. L.
    Forsh, P. A.
    Granovsky, A. B.
    Kashkarov, P. K.
    Kovalchuk, M., V
    Rylkov, V. V.
    PHYSICAL REVIEW APPLIED, 2020, 14 (03):
  • [4] Memristors Based on Nanoscale Layers LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x
    K. E. Nikiruy
    A. I. Iliasov
    A. V. Emelyanov
    A. V. Sitnikov
    V. V. Rylkov
    V. A. Demin
    Physics of the Solid State, 2020, 62 : 1732 - 1735
  • [5] Resistive Switching of Memristors Based on (Co40Fe40B20)x(LiNbO3)100 – x Nanocomposite with a LiNbO3 Interlayer: Plasticity and Time Characteristics
    A. N. Matsukatova
    K. E. Nikiruy
    A. A. Minnekhanov
    S. N. Nikolaev
    A. V. Emelyanov
    V. A. Levanov
    K. Yu. Chernoglazov
    A. V. Sitnikov
    A. S. Vedeneev
    A. S. Bugaev
    V. V. Rylkov
    Journal of Communications Technology and Electronics, 2020, 65 : 1198 - 1203
  • [6] Resistive Switching of Memristors Based on (Co40Fe40B20)x(LiNbO3)100 -x Nanocomposite with a LiNbO3 Interlayer: Plasticity and Time Characteristics
    Matsukatova, A. N.
    Nikiruy, K. E.
    Minnekhanov, A. A.
    Nikolaev, S. N.
    Emelyanov, A. V.
    Levanov, V. A.
    Chernoglazov, K. Yu.
    Sitnikov, A. V.
    Vedeneev, A. S.
    Bugaev, A. S.
    Rylkov, V. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (10) : 1198 - 1203
  • [7] Frequency-Coded Control of the Conductance of Memristors Based on Nanoscale Layers of LiNbO3 and (Co40Fe40B20)x(LiNbO3)100-x Composite in Trained Spiking Neural Networks
    Il'yasov, A. I.
    Emel'yanov, A. V.
    Nikirui, K. E.
    Minnekhanov, A. A.
    Kukueva, E. V.
    Surazhevskii, I. A.
    Sitnikov, A. V.
    Ryl'kov, V. V.
    Demin, V. A.
    TECHNICAL PHYSICS LETTERS, 2021, 47 (09) : 656 - 660
  • [8] Memristors Based on Nanoscale Layers LiNbO3and (Co40Fe40B20)x(LiNbO3)100- x
    Nikiruy, K. E.
    Iliasov, A. I.
    Emelyanov, A., V
    Sitnikov, A., V
    Rylkov, V. V.
    Demin, V. A.
    PHYSICS OF THE SOLID STATE, 2020, 62 (09) : 1732 - 1735
  • [9] Impact of (Co–Fe–B)x(LiNbO3)100–x Nanocomposite Memristors Characteristics Dispersion on Dopamine-Like Modulation of Synaptic Plasticity
    A. I. Iliasov
    A. A. Minnekhanov
    A. Yu. Vdovichenko
    V. V. Rylkov
    V. A. Demin
    Nanobiotechnology Reports, 2023, 18 : 971 - 976
  • [10] Memristive Properties of Structures Based on (Co41Fe39B20) x (LiNbO3)100-x Nanocomposites
    Levanov, V. A.
    Emel'yanov, A. V.
    Demin, V. A.
    Nikirui, K. E.
    Sitnikov, A. V.
    Nikolaev, S. N.
    Vedeneev, A. S.
    Kalinin, Yu. E.
    Ryl'kov, V. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2018, 63 (05) : 491 - 496