Adaptive boundary element methods for some first kind integral equations

被引:45
|
作者
Carstensen, C [1 ]
Stephan, EP [1 ]
机构
[1] UNIV HANNOVER,INST ANGEW MATH,D-30167 HANNOVER,GERMANY
关键词
adaptive boundary element method; a posteriori error estimate;
D O I
10.1137/S0036142993253503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an adaptive boundary element method for the boundary integral equations of the first kind concerning the Dirichlet problem and the Neumann problem for the Laplacian in a two-dimensional Lipschitz domain. For the h-version of the finite element Galerkin discretization of the single layer potential and the hypersingular operator, we derive a posteriori error estimates which guarantee a given bound for the error in the energy norm (up to a multiplicative constant). Following Eriksson and Johnson this yields adaptive algorithms steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically the expected convergence rate.
引用
收藏
页码:2166 / 2183
页数:18
相关论文
共 50 条
  • [31] Full collocation methods for some boundary integral equations
    Ricardo Celorrio
    Francisco-Javier Sayas
    Numerical Algorithms, 1999, 22 : 327 - 351
  • [32] Double approximation methods for some boundary integral equations
    Golberg, MA
    Bowman, H
    BOUNDARY ELEMENT TECHNOLOGY XII, 1997, : 373 - 382
  • [33] Full collocation methods for some boundary integral equations
    Celorrio, R
    Sayas, FJ
    NUMERICAL ALGORITHMS, 1999, 22 (3-4) : 327 - 351
  • [34] Legendre spectral projection methods for Fredholm integral equations of first kind
    Patel, Subhashree
    Panigrahi, Bijaya Laxmi
    Nelakanti, Gnaneshwar
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05): : 677 - 691
  • [35] IMPROVED NUMERICAL METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF FIRST KIND
    ANDERSSEN, AS
    WHITE, ET
    COMPUTER JOURNAL, 1971, 14 (04): : 442 - +
  • [36] Jacobi spectral projection methods for Fredholm integral equations of the first kind
    Subhashree Patel
    Bijaya Laxmi Panigrahi
    Numerical Algorithms, 2024, 96 : 33 - 57
  • [37] Numerical Methods for Cauchy Bisingular Integral Equations of the First Kind on the Square
    Fermo, Luisa
    Russo, Maria Grazia
    Serafini, Giada
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 103 - 127
  • [38] Numerical Methods for Cauchy Bisingular Integral Equations of the First Kind on the Square
    Luisa Fermo
    Maria Grazia Russo
    Giada Serafini
    Journal of Scientific Computing, 2019, 79 : 103 - 127
  • [39] Multi-projection methods for Fredholm integral equations of the first kind
    Patel, Subhashree
    Panigrahi, Bijaya Laxmi
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (04) : 722 - 744
  • [40] Numerical Solution of Some Nonlinear Volterra Integral Equations of the First Kind
    Saeedi, Leila
    Tari, Abolfazl
    Masuleh, Sayyed Hodjatollah Momeni
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (01): : 214 - 226