On the Quasi-Total Roman Domination Number of Graphs

被引:3
|
作者
Martinez, Abel Cabrera [1 ]
Hernandez-Gomez, Juan C. [2 ]
Sigarreta, Jose M. [2 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, Col Garita 39650, Acapulco, Mexico
关键词
quasi-total Roman domination; total Roman domination; Roman domination;
D O I
10.3390/math9212823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Domination theory is a well-established topic in graph theory, as well as one of the most active research areas. Interest in this area is partly explained by its diversity of applications to real-world problems, such as facility location problems, computer and social networks, monitoring communication, coding theory, and algorithm design, among others. In the last two decades, the functions defined on graphs have attracted the attention of several researchers. The Roman-dominating functions and their variants are one of the main attractions. This paper is a contribution to the Roman domination theory in graphs. In particular, we provide some interesting properties and relationships between one of its variants: the quasi-total Roman domination in graphs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Roman domination subdivision number of graphs
    Atapour, M.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    AEQUATIONES MATHEMATICAE, 2009, 78 (03) : 237 - 245
  • [22] On the Global Roman Domination Number in Graphs
    Ahangar, H. Abdollahzadeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2016, 40 (A3): : 157 - 163
  • [23] On the strong Roman domination number of graphs
    Alvarez-Ruiz, M. P.
    Mediavilla-Gradolph, T.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    Yero, I. G.
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 44 - 59
  • [24] Roman domination subdivision number of graphs
    M. Atapour
    S. M. Sheikholeslami
    Abdollah Khodkar
    Aequationes mathematicae, 2009, 78
  • [25] On the Global Roman Domination Number in Graphs
    H. Abdollahzadeh Ahangar
    Iranian Journal of Science and Technology, Transactions A: Science, 2016, 40 : 157 - 163
  • [26] Roman domination number of signed graphs
    Joseph, James
    Joseph, Mayamma
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 759 - 766
  • [27] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [28] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [29] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [30] Hop total Roman domination in graphs
    Abdollahzadeh Ahangar, H.
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 73 - 78