Density of bounded maps in Sobolev spaces into complete manifolds

被引:4
|
作者
Bousquet, Pierre [1 ]
Ponce, Augusto C. [2 ]
Van Schaftingen, Jean [2 ]
机构
[1] Univ Paul Sabatier Toulouse 3, Univ Toulouse, UMR CNRS 5219, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2,Bte L7-01-02, B-1348 Louvain La Neuve, Belgium
关键词
Strong density; Sobolev maps; Bounded maps; Complete manifolds; HARMONIC MAPS; LIE-GROUPS; MAPPINGS; TOPOLOGY;
D O I
10.1007/s10231-017-0664-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complete noncompact Riemannian manifold , we investigate whether the set of bounded Sobolev maps on the cube is strongly dense in the Sobolev space for . The density always holds when p is not an integer. When p is an integer, the density can fail, and we prove that a quantitative trimming property is equivalent with the density. This new condition is ensured, for example, by a uniform Lipschitz geometry of . As a by-product, we give necessary and sufficient conditions for the strong density of the set of smooth maps in .
引用
收藏
页码:2261 / 2301
页数:41
相关论文
共 50 条